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FOREWORD

T is a pleasure to me to. contribute a foreword to

this book written by an old student of mine. It is

well entitled * basic mathematics ™ for one of the
outstanding features of the book is its fundamental
character, The laying of sure foundations is very essential
in mathcmatics. As the author says in the introduction,

a great many people have been compelled by force of {

circumstances to take up the study of radio with a vexy
scanty mathematical background, and to these the hgek
should make a very special appeal. In no branck’ of
engineering is a thorough knowledge of basic mathgmatics
more essential than in radio. DBy its very nathwre radio
im{olves the study of rapid variatl'ions of/ Eitrent ;nd
voltage of various degrees of complexity.Sand a_student

cannot hope to get a clear undc%&%?}%uglib%%re\ﬁoﬁ%én
simplest problems unless he has a thoreugh grasp of the

fundamentals of differential and imfegral calculus and of

vector algebra, A valuable feature of the book is the

gradual development of the subject step by step, and the

pains taken at every stepato endow the symbols with

definite meaning. It is all'to6 easy for a student to attain

some facility in the manipulation of symbaols without having

any real understandiighof the physical realities involved.

1t is important forsthe student to clothe his symbols with

physical reality,afid"to appreciate the implications of each

step of the pathemalical development, and this the

author has dofie his utmost to encourage.

A]thougé“{vritten primarily for radio engineers it would
be a greatunistake to assume that it is not suited to students
of othémsubjects. The first six of the seven chapters into
which the book is divided are quite general, and it is only in
thejfinal chapter that the mathematical methods developed
in"the earlier chapters are applied to radic problems
and even these are largely of a general character that will
interest students of anv branch of physics or engineering.

G. W. O, Howe
Glasgow University
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INTRODUCTION

VERY long while ago—longer than I care to
remember—I was invited to write a series of articles
for the Wireless Engineer, or rather for Experimental™
Wireless as it was called in those days, on ** Mathematies
for Wireless Amateurs 7. I gladly accepted the invitation
hecause 1 had already discovered that the bes{ way of
learning a subject is to write a book aboutlit. So it
proved in this case, and I have ever sincesbeen grateful
that I was thus constrained to seek out @nd describe in
simple language the true inwardness pf¥thie mathematical
methods that 1 had for years beer usingin my daily work.
So also it scems were some readers pf the series, judging by
ww‘!si.E -SOME @‘51@51‘[1 letters fccqi}(cd then and since. 1
take this opporiuriiiy of thanking them, for it is largely duc
to this encouragement thahJI have been given the
opportunity of turning theserics into a book.

The original articles wexe written for those whose under-

standing of “ wireless, ’,’)’ as we called it then, was limited
by a lack of knowledgeof mathematics. Hence the “radio™
in the title, and those sections which deal particularly with
the analysis of @iternating-current circuits ; but the really
basic ideas athematics are common to all its applica-
tions, and therefore hope that the work may be of some
use to am“even larger class of students—and perhaps even
o somieteachers.  (If this sounds presumptuous, I can say
in €xclise that there were teachers among those who
ﬁo’fnhlendcd the original series.)

\>May I anticipate certain criticisms by stating briefly

3 “the considerations that have guided both the selection of
the material and the manner of its treatment.

Since it was intended to include in a single work all the
main parts of elementary mathematics, each of which has
usually a textbook all to itself, the choice lay between,
on the one hand, a fairly thorough discussion of the basic
ideas, with little room left for the detail of their develop-
ment and application, and, on the other, a condensed
statement of rules and formule for use in a more or less
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BASIC MATHEMATICS

rule-ofethumb way ; but this last is surely a second-class
way, suitable only for second-class minds, Even if space
had been no object I would still have chosen to emphasise
the basic ideas rather than their detailed development
and application. In mathematics, as in many other
activities, it is the first step which counts. If the basic
ideas are well and truly grasped, their application is a
happy hunting ground for the adventurous mind, which
will indeed lcarn more by going astray on its own than by

7

being carefully guided along well-worn tracks. (The O

impeortant thing is, not to avoid mistakes, but never 1o,
make the same mistake twice.) What I have done there-
fore is to select in each branch of the subject{those
elementary but fundamental ideas which I have féund, in
many yvears of practical ecxpericnce In radio weork, to be
definitely necessary or specially useful. F risherl I have
iried at cach stage to link up these Bﬁ?‘i&%ﬂfe&“rv&q{
real world of sensory cxperience from wilich they were, of
course, originally dertved, however, abStract they may
appear to be. In this connection I aftrglad to acknowledge
my great indebtedness to Professgrna. W. O. Howe, whose
early teaching inculcated in me\this realistic and eritical
habit of mind. S

Since the original series\ was written, Mr. Lancelot
Hoghen has shown JMow completely an apparently
academic, not to say %{htéric, subject can be vitalised and
humanised by a matural and evolutionary method of
description, I mwgntion his work, not to challenge com-
parison, which/would be foolish, but rather to claim a
modest kinshipy &t least in respect of attitude and intention,
I commengd 1t to future writers of textbooks, in the spirit of
the manwho hung up in his chicken-run an ostrich egg
markedywith the words * Keep your eye on this and do
your-best .

'Tezfdf ngion,
Middlesex

F. M. CoLEBrOOK

'ﬁrm'g.in

N

N

Y
\



LA A . aﬁ
take t

£\
N\
\

INTRODUCTION

VERY long while ago—longer than I care to
remember—I was invited to write a series of articles
for the Wireless Engineer, or rather for Experimental
Wireless as it was called in those days, on “ Mathematics
for Wireless Amateurs . I gladly accepted the invitatighy,
because I had already discovered that the best way\of
learning a subject is to write a book about it. Se it
proved in this case, and [ have ever since been“grateful
that I was thus constrained to seek out and @escribe in
simple language the true inwardness of the sgthematical
methods that [ had for years been using mnw daily work.
So also it secems were some readers of ths\ssrics, Jjudging by
q ] %gﬁﬁd letters received {then and since. I
i5 opporitnity of thanking them, for it is largely duc
to this encouragement that EMNwve been given the
opportunity of turning the series ifto a book.

The original articles were written for those whose under-
standing of * wireless ”*, asWe called it then, was limited
by a lack of knowledge of tfiathematics. Hence the “radio™
in the title, and thosescctions which deal particularly with
the analysis of alteraating-current circuits ; but the really
basic ideas of mathematics are common to all its applica-
tions, and I thf}c\fore hope that the work may be of some
use to an eveh larger class of students—and perhaps even
to some tedehers. (If this sounds presumptuous, I can say
in excusg jthat there were teachers among those who
commended the original series.)

May 1 anticipate certain criticisms by stating briefly
the \considerations that have guided both the selection of

othe material and the manner of its treatment.

Since it was intended to include in a single work all the
main parts of elementary mathematics, each of which has
usually a textbeock all to itself, the choice lay between,
on the one hand, a fairly thorough discussion of the basic
ideas, with little room left for the detail of their develop-
ment and application, and, on the other, a condensed
statement of rules and formule for use in a more or less
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BASIC MATHEMATICS

rule-of~thumb way ; but this last is surely a second-class
way, suitable only for second-class minds. Lven if space
had heen no object I would still have chosen to emphasisc
the hasic ideas rather than their detailed development
and application. In mathematics, as In many other
activities, it is the first step which counts. If the basic
ideas are well and truly grasped, their application is a
happy hunting ground for the adventurous mind, which ¢\
will indeed learn more by going astray on its own than b\ ™
being carefully guided along well-worn tracks, (The
important thing is, not to avoid mistakes, but neyen to
make the same mistake twice.) What I have don@éthere-
forc is to select In each branch of the subject” those
elementary but fundamental ideas which I hayefound, in
many years of practical experience in radibywork, to be
definitely necessary or specially useful. Eidfther, I have
tricd at each stage to link up these, B JbEN bR HRES
real world of sensory cxperience fropm which they were, of
course, originally derived, howeyer” abstract they may
appear to be. In this connectionI'am glad to acknowledge
my great indebtedness to Profeiser G. W. Q. Howe, whose
carly teaching inculcated ifme this realistic and critical
habit of mind. ~

Since the original €emies was written, Mr. Lancelot
Hogben has shpwﬂ,.&jow completely an apparently
academic, not tQ saysesoteric, subject can be vitalised and
humanised by ¢&, natural and evolutionary method of
description. d’#fiention his work, not to challenge com-
parison, wHich” would be foolish, but rather to claim a
modest kiship, at least in respect of attitude and intention.
I commend it to future writers of textbooks, in the spirit of
the soan who hung up in his chicken-run an ostrich egg
madrked with the words *“ Keep your eve on this and do

o your best .

N\ 'Teddingtan, F. M. CoLERROOK
Middlesex



.¢\'~
\.n.

O

REVISER’S PREFACE

WHEN I was asked by the publishers to undertake the
revision of this book by the late Mr. Colebrook;
. under whom I once worked at the National Physig
Laboratory, Teddington, 1 very soon became aware €5t
any alterations {except the correction of a few trivial smis-
prints) would merely spoil the original. The first seven
chapters have therefore been preserved in theix entirety;
Section g5 has been somewhat expanded. & *

Chapters § and g contain new matter of\n the original
text for which I alone am responsible, \The elements of
operational calculus and matrices (wi'txh%()t more than two

wwwiOBYS ANlae9lemng have been disedsséd, together with a

) 3

*

number of miscellaneous topics,Msuweh as numerical com-
putation and normal distributions. The object has been
to make the reader’s first edtéunter with these subjects
sufliciently encouraging to gnable him to face without fear
textbooks which deal mere adequately with operational
calculus, matrices etce, As far as possible, I have tried to
make the symbols andinotation used consistent with that of
the first seven chapters,

Mathematics{When unknown and unfamiliar is rather a
frightening #ad unwelcome subject to most engineers.
The chicf divr’of both the original and the revised parts of
this book's' to remove mathcmatical inhibitions, and to
rcvcal%%ié power of mathematics to clarify and simplify
pragtigal work.

N

Teddingtan, J. W. Heap
Middlesex
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Chapter 1

ELEMENTARY ALGEBRA :
THE FUNDAMENTAL IDEAS

)
I. SYMBOLS O
NE of the most characteristic things about algebra is
its appearance, and to a beginner it is certamly not
prepossessing. In place of concrete and {ander-
standable numbers, to which we have learned_¥o attach
deflinite meanings, we are conlronted with siich things as
a-lb=¢c wwé raulibrary.org.in

The immediate and natural reaction is’lﬁ&: that of the little
girl who knew her tables up to twelyeytimes and was asked
what was thrcc titnes thirteenﬁ—“ Don’t be silly. It
docsn’t exist . The writer’s\earlicst recollection of
algebra was prcc1se]y like thaT which shows that the
matter was not clearly cxp]aincd to him, or at least not
clearly enough. The swhele point is that the letters of
ordinary aigebra are not really being used as letters at all.

‘They are just sy )Qs which stand for numbers, and it so
happens that thrr\cttcrs of the alphabet are very con-
venient symbol{ e use because they have an agreed shape
and knownyaames. In addition, certain other symbols
are used wihlich are cither a short way of making statements
(for instance, the symbol “=="" is only a short way of writing
s tt&n\;:aime as ** or “ is equal to "'} or else instructions to
do_Certain things with the numbers represented by the
I,eéif)i‘s.

\ ) 2. ALGEBRRA AS A GENERALISATION OF ARITHMETIC

Bearing in mind the real character of the letter symbols
used in algebra, we can understand this statement taken
from Chrystal’s textbook. “ Ordinary algebra is simply the
general theory of those operations with quantity of which

11



BASIO MATHEMATICS

the operations of ordinary arithmetic are a particular case.
The fundamental laws of this algebra are therefore to be
sought for in ordinary arithmetic.” ‘This, then, let us
proceed to do.

3. ADDITION

What do we really mean by the addition of two num L‘l(‘\\
in ordinary arithmetic ? Briefly, a number is a gmup
of ones that we know by name. Adding two r}mnhcn
means finding the name of the group which™eontains
as many ones as the two groups put tugt‘th;‘r, Thus we
know (by memory now, but originallyDy trial with
fingers or beans) that the group two comabined with the
group three has the same numher of oan~a,s the group that
we have agreed to call five.

The above example is an ideal casi\ concerned with pure

wwwrlbmddibrarfnopaétice, howevery™we shall not be concerned

with pure numbers but with ftimbers of things—volts,
amperes, pounds, shillings and'pence, cabbages or kings—
and here we come to one,ot the most important rules in the
whole of mathematicsa 3%

Things can only beradded together in the arithmetical sense if
they are things of the\same kind.

For instancey three apples can be added to two apples,
and the rcsumg group can be called five apples. Bul
can three &pples be added to two oranges ? Yes, in the
SEnse tha( they can all be put into the same dish, but the
number Jfive cannot be attached to the group——uniess
incief';d, ou call them five fruits, but then you are obeying

~general rule, for vou have obliterated the distinction

between the two kmds of things, and have really added three
U ¥ruits to two fruits ; in other words, the things have been

regarded as of the same kind. But obviously this can
only be done if the distinction between the iwo kinds is
unimportant for the purpose in mind, and in radio problems
this never happens.

The above is the essence of what is known by the rather
impressive title of “'The Theory of Dimenstons ™. It
will be considered more {ully later on, but for the present
it will be enough to realise that if the working out of a
12



ELEMENTARY ALGEBRA

given problem in wireless leads to the conclusion
L+ R=10 ohms,

where L means some number of microhenries and R means
some number of ohms, then the result is wrong without
any further consideration, because it adds together two
numbers of things of different kinds and calls the result a
single number of one of the kinds. O\
In the ordinary arithmetic series of numbers that we\
know by simple names, one, twe, three, four, five, and, st
on, the successive members get larger and larger in“an
orderly, uniform, and simple way. For this,¥@ason,
numbers are a very convenient scale or yard;st}tk * for
describing size or quantity, This may appeacMo be an
extension of the simple idea of pure numbery but in fact
it is a direct application of it, the only différénce being that
each kind of quaniity has its own vbj&idbfa&‘lthmfymg.in
“unit ¥, Thus a current of 5 ampeyes means a current
having 5 units or *“ ones ™ of curregnt, the unit for this kind
of quantity being called the antperc. Morcover, just as
in pure numbers we have a simple way of describing large
numbers in terms of certainispecial groups of ones—tens,
hundreds, thousands andrso oz, so also in some kinds of
quantity we have a sefies of special names for larger and
larger groups of t{1\iuf‘1it of that quantity—inches, feet,
vards, for example ,P}nd it is just too bad that our * scales
of notation ™ ir{ yuantities of various kinds are not the
“ decimal ”* scale that we use for numbers. Perhaps the
less said aboupthis the better.

Now welean go on to the finding out of the generalised
rules ofarithmetical addition, and the easiest way will be
to fis\on some one particular kind of thing that we can
Irge\tké' a picture of either mentally or actually. Then,

01 the understanding that all our numbers, or symbols
\standing for numbers, mean numbers of this particular
thing, we shall be obeying the fundamental rule about
addition, and the conclusions arrived at will apply generally
to any form of arithmetical addition. A convenient thing
will be a travel or a journevy of, say, one inch in some
definite direction, this direction being from left to right

I3
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“— @ wemes ————p  parallel to the bottom edge of

. the page. 'This may seem a

»  curious thing to choose, but

Fig. | —Representing che number o it will be found later that it is
by a lourney of @ inches in a A - .

horizantal direction to the right very suitable for finding out

the rules about subtraction

¢ menes  Aalso, which are not so easy

b NeHEs —— e =y understand as  those ok

— » addition. RAY,

Any number, say thrde o

these things will meanjthree

i » Jjourncys of one ingh added

€ INCHES together, and sin€e“the add-

Ll e . NON
ing of two jolrneys means

4—————— 2 |INCHES ————

- B INCHES — e

Fig. 2-Showing that + journey g starting the s¢cond from the
can be made up of journ .- .

then journey ¢, or iourn;}'c ﬁarr;g ﬁrl_ishlr_lg',p@nt of the ﬁrst,
www.dbradliEREHFEME. tn this will\bé the same as a

journewei three inches in the
given direction. In general anv\number ¢ will mean a
journey of ¢ inches in thelgiven direction (Fig. 1).
Suppose now that the jouwmey & is carried out in two
stages, first a journey & gm’d’thcn a journey ¢, as shown
in the upper part of Fig? 2. Then e can be described
as the result of adc@ng the journey ¢ to the journey
b, that is, O

Pt {

.\\N a==b-+r

Further, it iy %:I(;ar that it does not matter which of the two
journeys\bﬁer ¢ is made first {lower part of Fig. 2), so that
\V

. a=b+c=c+b
O

Ifg the same way it will be just as easy to show that
4 o\’ 3

O

btedd=b-+d4¢
=¢+b+d

=d + ¢+ b, eic., etc.,

d being another journey of d inches added to the other two.
The same idea could be extended to any number of

I4



ELEMENTARY ALGEBRA

journeys without alteration and we thus arrive at the
second general rule about addition.

A succession of additions will lead to the same result whatever
the order in which they are carried ont.

4. Tue UskE OoF BRACKETS -
Returning to the statement
a==8-4+ . \\
this expresses the idea that the two journeys & and ¢ can\ ~
be considered as a single journey. Similarly, any numper
of journeys ¥, ¢, d, ¢, etc. can, if desired, be assogiated
Logt‘ther and con51dcrcd to he a smgle_]ourney b+ g d -

- ete. Or, again, two of these journcys can b m\emdcrcd
asa single journey, il that is convenient for some partlcular
purpose, leaving the others as separate journeys.  When it
is desired to consider anv particular greup; %@umﬁqsy(@g in
numbers) as a single Lhmg, that group\c.m be enclosed
between two brackets thus (¢-|-d), andl that means that we
will take this as a whole, without regard to the fact that i
is actually made up of two pars™ Fhus the compound
group of numbers ¢, b, ¢, d canbe written in the form

atb o+ d
AN b (o - d),

the ¢ and d numbe\s\being, so to speak, wrapped up into
a single brown,paper parcel. This is called the Law of
Associalion for\a.ddltxon, though it is certainly very difficult
to see whyits should be called a law at all, any more than
the wrapping up of things in a brown paper parcel should
be ca the Law of Brown Paper. However, the idea
of assdeiating certain sets of numbers together b\« means
ofbmckels is a useful one in practice.*

\¥
\/ 5. THE AppiTioN oF DOUBLE GROUPS

Beforc leaving this subject of addition it may be as well
to return for a moment to our three apples and two oranges,

or in the form

* The associative law for addition is usually expressed: a + (b + ¢) = {2 + &} + .

I3



BASIC MATHEMATICS

because they can be used to illustrate a very important
cxtension of the idea of addition, one which will prove
useful in connection with alternating current circuits.

It has been shown that the group three apples plus
two oranges cannot be expressed in any simpler form,
since the two parts of the group cannot be combined in the\
sense of arithmetical addition. Two such double groupd
can be so combined, however. For instance, three apples
plus two oranges combined with four apples plus “six
oranges can obviously be expressed as one double-group,
scven apples plus eight oranges, that is, the two s€tsof apples
can be added and the two sets of oranges,éan’ be added,
To generalise this idea, suppose the lette;rs)g: b, ¢, etc., to
represent numbers of apples, and the Greek letters a, B, v,
€ic., to represent numbers of orangesyand suppose that
the working out of a probler concefzied with these double

v Jh0Ups. of ¢ gg}g}lreg_iﬂnd oranges leads\to the statement

O
* '.

brat

a-—!—a+b—|—c—§—:ﬁ“—}—y=d—}-3.

Then the number 4 on théright-hand side taust be the
result of adding togetherall the apples on the left-hand
side, and similarly the\ntimber § must represent all the
oranges on the left-hand side. The statement is therefore
equivalent to two{eeparatc statements
c2\J et b+e=4d
\ A\ e+ f+y=4
If this shople idea is thoroughly assimilated, the reader
will firid'dhat he has got a firm tooting in the ** complex
number” or “operator ” method  of working  out
altergating current circuits,
6. SUBTRACTION
‘The idea of subtraction in the ordinary arithmetical
sense is one with which life makes us almost painfully
familiar. Returning to the ideal case, we know (by
memory) that if two ones are subtracted or removed
from a group of five ones, then what remains is the group
that we have agreed to call three, and if the ones are, say,
pounds, then our understanding of the process is intensified
16



ELEMENTARY ALGEBRA

"in some cases by its emotional associations. For a child,
actually carrying out the process with fingers or beans, the
matter ends quite definitely when all the five ones have
been subtracted, and if he is asked to take away any more
after that he will say, quite rightly, ** It can’t_ be doqe .
Latcr on, however, he will be forced to acquire the idea

of a negative number when he finds that seven pounds QY
have been subtracted from his five pounds, leaving him
with a debt of two pounds. Mathematically speaking hcxﬁ’\
would now be said to possess minus two (—2) pounds, and
assuming him to be an honest man, he will realise thatif
later on he earns two meore pounds, these mus {be) set
against his debt of two pounds, leaving him the ‘possessor
of exactly nothing, Expressing this mathcmatft::}lly,

—2+2=0

AY;
and since this is true whatever the ma@fa:imeudﬂﬂhﬁydﬁmﬁm
and of the equal amount that hag\fa‘be earned to set
against it, O
—a-+a=0

where 2 means any number, &\

This statement is the mos general way of saying what is
meant by the ncgativethumber —a. It is that number
which, when added,.fe“or combined with the positive
number 4 makes ghe\iotal result nothing. The actual or
practical meaning of the negative number —a will therefore
depend on, willQn fact be, in the sense indicated above, the
reverse of the)meaning that we attach to the positive
number a,,\)

The fori of expression should be noticed carefully,
The ward ‘ subtraction > does not come into it. We are
actually going to deal with subtraction, but it will be found
thal*when this operation is given the wider sense that it

~Jas in algebra it will be much clearer and more con-
N\ venient to think of it as the combination or addition of
positive and negative numbers.
What is the meaning of the negative number —z in
terms of the things or units that were used in finding out
the rules about addition ? The positive number ¢ was

7
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+ 2

[
o

s J INCHES —————%
—=

-~

- & INCHES -
+Q-d

fl

ol
-

Fig. 3—~Showing how che number —a is represented by a journey of 7 inchesd A
In 2 horizental direction to the left '\
\.
shown to represent a journcy of & inches to, theyright,
and the negative number —a is such that (O

N

—a+4ta=uo

In other words, adding the numbege’to the negative

: r@gatjve number, that
1s, brings us back to the starting peit: * This becomes quite
inteiligible if the negative number —a¢ means a journey
of @ inches to the left.  In factthis is the only way to make
it intelligibly consistent witi*the given meaning of -+«
{see Fig. 3). Omne of thed most important rules of the
negative sign now becomes clear. Applying the negative
sign to the number g&éverses the direction of the journey of
a inches which this number represcnts. Applying the
negative sign #p{tht number —a will therefore reverse it
again, which\brings it back to its original direction, that
18,
\&/ — —a=-+a.

Putnng’}}“us shortly in words, minus minus is plus, and in signs
" s'§ 3 : = +'

\'f .* Here we have a familiar acquaintance in academic
\.J dress, the familiar acquaintance being the phrase, ©“ Two

negatives make an affirmative

7. SOME SPECIAL SYMBOLS

Before going on to consider the combination of positive
and negative numbers in general, it will be convenient
18
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to learn a 'little more shorthand (for that is what the use of
mathematical signs really amounts to}.

(i) azb
means that the number g is greater than the number &

Notice that the thin edge of the wedge points to 4, which
is, so to speak, the thinner of the two numbers.

LN
. oA\
(i) a<b R \J
means that the number g 15 smaller than the number b,
The same mnemonic* will serve, £

N
Yhere arc some variations of these signs ,xc\'fhlch_arc

useful for numbers which can vary in sizender given

conditions. /

(1ii} ab PN
means that a is nol greater than b, whial s, ¢ ocan he

AT At
number equal to or less than &. Notice that the ™ not

suggested by the crossing out of 1;]:;6 ¥greater than ™ sign.

any .
y,.(%g.m

(iv) Similarly a<Qds

means that 2 is not less than\by that is, can be any number
equal to or greater than b

(v) In the same wdy® a==b
3
means that ¢ is ot equal to &,

{vi) Finally;\it 1s necessary to define a new idea, or a
new word, Whith comes to the same thing. T#he difference
between 1§ wumbers is that number whick must be added to the
Jmallern@?w two to make it equal {0 the larger. Thus the
dilférénee belween two and five is three, three being the
nuibér which must be added to the smaller, two, to
make it equal to the larger, five, We are not here con-

“eerned with sign at all, nor with the combination of
positive and negative numbers. Difference expresses a

simple arithmetical relation between the sizes of numbers,

regardless of sign. In symbols the difference between
% and b is written

a~ b

* Mnemonic means “ assistance to memory* .

19
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and since the difference between a and &, as defined, is the
same number as the difference between b and 4,

g b= b~ a.

8. COMBINATIONS OF POSTFIVE AND NEGATIVE NUMBERS
The general case of the combination of positive and{
negative numbers can now be considered, and with the
help of the ideas already acquired it should not Rroye
difficult. O
The combination of the positive number « and the
negative numhber —b can be written
‘+‘ a -— bs ’w’\'\
or more shortly still, \/
a—b. \
In terms of cur journey units this fagans a journey of 4

wnindhesulebthe it ifollowed by a _]OU}‘HBY of & inches to the

left. This is illustrated in Figd™y¥{a) for the casc a5
The length of the resulting jourtiey will obviously be the
difference between a and !J ‘fl'ldt is {a~b), and iis direction,

+a R \“that is, sign, will depend on

. =*%  whether we go more to the

- right than to the left or vige

- i.“> (2) versa.  In other words, the
\;\.. sign of the resulting journey

+ will be the sign of the greater
O of the two numbers,  and &,

e N just asinahuman partnership
+o-da\J {b} thestrongerofthetwo partners
& Fig. 4 will get things his own way.

In the case illustrated in Fig.

4}a), ¢ wins, that is, the sign of the resultant journey is
wLpositive,  In symbols,

a—b =1 (a~b).
On the other hand, for two other numbers ¢ and 4, such
that ¢<2d (Fig, 4 [b) )

e —d=—{c~d)
or the resultant journey is to the left or ncgative.

In words, the combination of a positive and a negative number
20
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is another number the size of which is the difference of the two
nmbers, and the sign of which is the sign of the grealer of the
two numbers.

A further thing to notice is that it does not matter which
of the iwo journeys is made first. The result will be the
same, If this is not immediately obvious it can be made
a fact of experience by actually drawing out and measuring
several such cases, as in Fig. 5. This conclusion can be
stated R\,

+ag—b=—5b+a '1.\

s
£ NN
< D

Further, in the case of several journeys such as \

/N

—|—a—b~—c—|—d—e—|—ﬁetc.,’

any arrangement of these can be got by%hangin% round
two at a time, and since .'wa_dbrau ibrary.org.in
changing round two at a time ANV +a o
does not affect the result, any O F 4—.——b-—:-
arrangement of these journeys 3" -
will have the same resulti™ +a-5
Finally, as these jousdey
units satisfy the fundamen(al  gmmmm—2 e
rule about addition§ (being o}
things all of thecsame kind), .
the above statcnﬁt may be - —b+a
completely _generalised  as Fig
follows & ) )
The m@i‘ of adding any number of positive and negative
numbersasnot affected by the order in which the various posiiive and
negaltup-numbers are added. .
This is known as the Law of Commutation {¢f.
~Section 3), o
~\J How is the rule of signs to be applied to a rather corn-
\/ plicated group of journeys (or numbers) like the one just
considered ? The easiest way is to take all the positive
journeys together and all the negative journeys together,
st as in making up accounts one adds up all the credits
together and then all the debits together. .
First, therefore, the journey will be arranged in the form
21

[
o




N
%
\ )

W

BASIC MATHEMATICS

‘at+d+f—b—¢c—e
Now all the positive journeys, or jourmeys to the right,
can be combined together and considered as the single
journey to the right,
+ (e +4d + f).

Similarly all the negative journeys, or journeys to the teft,
can be combined together. The result will be a single
negative journey the length of which is equal to that ‘ofjali
the separate journeys put together, that is, the sufd of the
separate negative journeys. This single negazti{}p lourncy

1s therefore \
~(+ecte. LS

The total journey can now be expressed awthe combination
of these groups, that is, )

a\/
+a—b—e+d—c-AfD>

_dbraulibrary,arﬁ?irﬂ— g - d —}—f: .__ — — ¢

={a+d+ N+ (b+c -+,

and the rule of sign cap(Be applied to the two separate
groups. Thus if (2 <\ f) is greater than (6 + ¢ + ¢)
the sign of the totaltombination will be positive, and
vice versd. P

0. BR;:%}KETS AND THE NEGATIVE SIGN
It was, shown in the preceding section that the three
negative journeys — b, — ¢, and — ¢ could be combined
togethér into the single negative journey represented by
— (& ¢ + ), and since (b -+ ¢ -+ ) is the samc as
(&}!\ + ¢ + &), then this grouping process is represented by

.\'\\ —b—c—e=—{+b+c+e¢

\ 3 and since there is no reason why this process should not be
AN

reversed
—(+b+ecte=—b—¢—e

This shows that if there is a negative sign in front of a
bracketed expression, and the brackets are taken away,
then all the positive signs inside the brackets must be
changed to negative signs. :

az
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[e] + 2 A
B-h———a—;:-
a -
(a) o b
{+a-b}
5,—(+ a-56}
4 -g o {b) \
;ﬂw-m-*- QU
+5 g 0 N\
« \
Fig. & g

A

_ Consider now the combination of journeys + ae=bshown
in Fig, 6 {(a). This means the journey O todd\and then
4 to B. Considered as a single journey it is the journey
(- a — #), that is, the journey O tp "dgap}}iiﬂgytbﬂg.in
negative sign to this journey reverseg us direction and
makes it the journey O to B” shown in(Fig. 6 (b), that ss,

0B = (+a 8"
OB = — {(£0 — b).

If now it is wished to disseliate the journey OB’ into two
parts, one of which sh?iﬁ‘ be of length a, and the other of
length 4, there is onlw one way to do it. The journey g,
the longer of the™wo, must be made to the left, and the
Journey & to t}\ii;: ‘right. 'That is,

oy 0B = —a+b
This shfiar”s\;ihat
O —(+a—¥8 =—a+b

TN
S

& he same argument can be applied if a is less than b.
\/ If the bracket contains a number of positive and negative
numbers, these can be grouped together in the manner
shown in the preceding section. For instance,

@—~b—ctdte—f=atdte—b—c—f

= (@ +d + ¢ — (b + ¢ + f) by Section 3.
23
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Now representing the group (a + 4 + ¢) by the single
number or journcy g, and the group (b + ¢ 4 f) by the
single number or journey ¢, then

e —b—c+dte—fFf=p—g
and
~@—b—ctdde—f)=—(p g

— ¢ +q as alreddy
sho&vﬁl
=—{at+d+e +(6+c+f) « \
=—a—d—e+b+ct+f N
= —a+btec—d—c+ 00D
The general rule should now be cledt) [/ a negative
stgn 15 in front of a bracketed group of numbedy, and the brackets
are taken. all the positive signspipside the brackets musi
‘”W‘Bea&‘a?zﬁgéﬁ %g?‘?%g‘iiﬁ"e .rignﬁ, and alf Qéﬁg&ti&g signs must be
changed into positive signs, \S
It should already be obviousithat if there is a plus sign
in front of the brackets, themthe brackets can be taken
away without altering the§igns inside the brackets at all.
This only expresses the jdea that a combination of positive
and negative numbefsh can be considered as a single
number, for cxamgle,

e —Moctd={a—b—c+d
L\ =+ (a6 —b—c+d
or, reversing‘the process,
..’+"(‘a-——b—nc+d)=a—b—c+d.
N

W

' ; 2o VAT " .
,\\“ T0. BRACKETS WITHIN BRACKETS

W\ Just as a number of parcels can be wrapped up into a
NS larger parcel, and a number of these larger parcels can be
“\* wrapped up together into a still larger parcel, so 2 number
N/ of combined numbers can be grouped together into a
combination of combined numbers, and these again can be
further grouped together indefinitely. For distinctness,
cach degree of combining or wrapping up is shown by a
different sort of bracket. To take an example—combining

the numbers

24
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(@ — b)
and — (¢ + 4}
gives {{a — 8y — (¢ + ).

Combining this with a similarly combined negative number
. e+ 1)+ —Hl
gives O\
dle &) —(c+d)] —[le +./) +(g— B} L
and combining this with another simple number & gives, ™
FA-{lle —8) — (e +d)] — [(e + 5 + (¢ =BV
In carrying out the reverse process, one woulda’i'g:déz}ling
with a parcel of parcels, remove one wrapper it a time,
starting with the outside one. Dealing with* the above
combination of combinations in thwwss\gltmra\&'mﬁra?l@rg_in
remembering that every sub-combination 3 to be regarded
as a separate single thing, the process\becomes
kil - 8) — (¢ + )] — jest f) o+ (g — Bl
k+[{a--8) — (¢ + diesie + f) + (g— A}l
kt+(a—b) —(c LdpES (e 4 f) — (g — &)
htae—b—c—dXe—f—g+h
which reveals ihe fact that £, e, and # are the only positive
numbers in the wholesgroup, a point which was not at all
obvious in the con bined form.,

Actually theyparcel analogy is not quite complete,
hecause in a cAse like the one above there is nothing to
prevent oneaffom unwrapping some of the inside parcels
first withgup-disturbing the outer wrapping. Thus

E+ENE b)) —(c+d)] —[le+F) +(g— R}

;\k +{a—b—c—dl —[e+ f+g—H}:
Qneican even rearrange the separate numbers into different
Amside parcels again, thus

\J Fdilla—d) —(c+ 5] ~[e—k +{g+

Another inside rearrangement is

Etila— (ke d)] =L+ £+ — i}
Edile— (b +c+d] + -+ 7+l

which exhibits the number in a more symmetrical form.
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The following is left as a simple exercise for the reader.
Show that
(@ + b+ —{a—8 —[—b 4 (a—-al
AP i

I1I. GENERALISATION OF THE LETTER SYMPBOLS

Up to this point it has been assumed that thedetter
symbols used in algebra represent positive whole ngfnbers
and negative numbers have been represented by rchxmg
the negative sign to the letter symbol. This<¥asidone in
order that the laws about association and €ommutation
and the rules relating to the negativE 3ign might be
cxplamcd as clearly as possible.  But new*that these things

wrg grqe AT yyplaunv:d there is no rcasbn why the meaning

581 Should be restricted in this way,* and
in practice it would be rather inconvenient. In later
applications it will be found that the number represented
by =a given symbol may vaty’ over very wide ranges in
accordance with the condmons of the preblem, and may
be negative for one get*of conditions and positive for
another. It will be found on examination that the rules
developed for thegdombining of the numbers g, b, ¢, 4, etc.,
in accordance with the signs written in front of thern, will
be equally valid“whether the actual numbers represented
by the lebters are taken as positive or negative. For
examplesyen the understanding that the letters mean
positivetimbers, it was shown that

’\ a—{b—¢c)=a—b-+e¢
,{"Qd t.hls can be confirmed by putting

I
2

3.

Then (b —¢) =2 —3=—1,

and a—(b—¢=1——1=1-L1=a2
Also a8 —b+e=1—2-43 =2,

which confirms the statement.

b

[4

il ll

* According to Chrystal this important fact was not generally realised until alout 1640.
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Now suppesc instead that

a =1

b =2

€ = — g
Then (b —¢) — 2 — — 3 =2 + g =5,
and a — (6 —¢) =1 — 5 = — 4. .
Also a..--b—!—g:l—2—1—-—-3:1—2_-3:._.4:”\’\,,'\

and again the statement is confirmed. As an example\of
a case in which a single symbol can assume a wide rangepf
values, positive or negative, take \ fs,
a==5b—¢ )

where b can be any number from o to Tao andh¢ can be the
same or any other number from o to FOEIPHIERLAEREDRE I
any number from —100 to + 160, a2\

On the basis of this wider interptetation of the _lctter
symbols, it will be necessary to recousider the meaning of
the “ greater than ** and * less¢than > signs (Section 6).
When ¢ and b are positive mugibers, say a = 1,000 and
b =1, then the statement %> b is quite unambiguous.

But supposc @ = — 1—3000‘ and b=1. What is meant bY
* greater than ”* in acase like this ? It is, qf course, only
a matter of definitigmvand agreement, and 1t 1s generally

agreed that the gréater than ” sign shall mean “ more
positive than *_§o that now b > a for the given values.
Remember thAthe wealth of a man who has one pound is
greater thaxi that of a man who has a debt of a thousang
pounds. ~Fhat is the sense in which the * greater than
sign is\ased algebraically. The other signs are similarly
interpreted, and need not be considered in detail. If in
apy\ease it is desired to indicate the relation between the
~actual numerical magnitudes of the two numbers without
N Aegard to sign, then this must be specifically stated, for
example, “ g > b numerically ”, Some writers use for the
same purpose the notation
|a) > |61, ‘
that is, the symbol is enclosed between strokes to indicate

that its numerical magnitude only is being considered.
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For the present, therefore, the letter symbols can he
taken to mean positive or negative whole numbers.
Further extensions of their possible meaning will come
In their own time.

12. AN ErEcTRICAL EXAMPLE N\

The gencral meaning of algebraic addition will perhaps
be made clearer by a physical example. A mangstatis
from a point 100 fect above sea level and goes fof'a long
walk up hill and down dale, eventually coming, bBack to
where he started from. Dividing up his walk, into parts
where he is either keeping on the same level{going up, or
going down, let ¢, ¢4, 4, 64, etc., compla(@ly represent the
separate changes of level that he encognters. Then since

st ipialishangergfilevel is nothing fpomstart to finish,
cp -+ £y + Ty -+ Cy +~65x\_‘i ete, = 0.,

It is clear that some of thesd pumbers must be positive
and some negative, and thisi§what is implied by the words
““ completely rcpresent o\ If an ascent is represented by
a positive number, thepithe algebraic statement is sound if
a descent is represented by a negative number. If g, a,,
@y, etc., and d,, M) d,, ctc., be positive numbers which
represent the a.ct?ral amounts of the various ascents and
descents, theqithe statement can be put in the form

ay + aa\F ag 4 ete. — dy — dy — dy — ete. = o,

It is just@’ matter of definition and agreement which form
is ugedy If the first, which is in a sense more general, then
it mpst be remembered that when actual numbers are put
.%place of the letters, the numbers must have their proper
W\ 'sign attached to them, according to whether they stand
.08 for a rise of so many feet or a fall of so many feet.

~\\/ The discovery of a scientific law is often, perhaps always,
\/ the recognition of an analogy, or an essential similarity
between two sets of ideas. If, in the above example, the
idea of potential difference is substituted for © change
of level 7, and the Journey round and back to the starting
point is thought of as going round a closed circuit of electric
conductors, then students of electricity will recognise in
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the example a statement of Kirchhoff's Law about the sum
of the voltages in a closed circuit, an ascent representing
a {orward electro-motive force, and a descent representing
a fall of voliage.

13. UNDERSTANDING OR RULE oF THUME

Before going on to the last of the fundamental rules of
arithmetic, that is, those concerned with multiplication ()
and division, it may be as well to face, and iry to answergs\
a question that may have arisen in the minds of some™
readers, * If 1 learn all the rules, such as the one about
‘ minus minus cquals plus * and so on, and am very, ézyeful
to go by them always, is it realfy necessaryJor\me to
understand them all as completely as you séemvio want
me to 7 » .

The reader need not wait until hecd "ﬁ‘é?@ﬂ,’ iprarore-in
stands all the rules before making use of'them. But there
are several rcasons why he should try to"understand them
as fully as possible. o\
1In the first place, understanding deepens the original
impression, and so gives thememory a firmer foothold.
Again, understanding giveswConfidence, real confidence
and mastery, and not sferely the absence of fear that
follows on familiaripg\ Finally, using rules without
understanding them 4s'not treating the mind with proper
respect. It is asking‘it to be satisfied with the position and
capabilities of a tpAm driver, without aspiring to those of
the engineer WK knows how to lay down fresh tracks and
design bettermachines to run on them. .

There ds,one other thing to be said about this question
of Und\‘fstanding the rules, and this introduces what has
alwaysseemed to the writer to be one of the most fascinating
aspects of mathematics, Borrowing a phrase from the

/~acing stables, the Rules of Mathematics are by Intuition
gut of Experience. In other words, they result from the
Mating of certain inborn habits of mind or “ modes of
perception  with sensory impressions of the outside world.

oW many cases will arise where adherence to these n{les
will take the mind into a region where understanding

reaks down, in the sense that no kind of sensory
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impressions can be found to correspond to the processes of
thought. Nevertheless, it will be found that the rules
remain valid in passing through this region of darkness,
for the processes can be carried still further until they re-
emerge into daylight, so to speak, and sensory impressions
can again be found to correspond to them. To take any
example, which the more advanced readers at least wili b
able to follow, it is possible, by blindly following the ruleg, %0
calculate where the tangents to a circle from a point-inside
the circle will make contact with the circle. Suchgangents
cannot be drawn in the ordinary sense of the gvord, and
the pomts of contact will be *° 1m'1g1na.ry » However,
continuing the process, the linc that passes through these
points can also be calcutated, stil by biidly followmg the
6 found that this is a\{cal line, possessing
cértain tse herties with respect t0'the point inside the
circle. It is d1fﬁcult to realise the H implications of this
process. It suggests that by megdns of its intuitions the
mind can transcend the limitations of sensc impressions,
It is only in this sense that the mind should be allowed
to be satisfied in using rfles’ without understanding them ;
and even here the appdrently unintelligible parts of the
process should notde accepted as an unsolvable mystery
but rather as a,chdllenge to further thought. Later on
we shall come 't a classical example in which a very
simple and j%n::al interpretation was found for a set of
ideas previohsly regarded as purely symbolic and un-
transiatalsle into any kind of sensory impressions.

N

N\ S

\: ) 14, MULTIPLICATION

There are probably many readers who will say or think,

\'~ 4 I know all about simple multiplication. Let’s get on

to the calculus . The implicit assumption that one needs
to know all about multiplication before going on to the
calculus is right enough, but such readers are invited
to reconsider the first part of the statement. Anyone
who knows all about multiplication should be able to
give clear answers to the following questions and to many
like them :—

o
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1. Sincc one can multiply volts by amperes and call the
product ** waits ”’, can one multiply oranges by apples ?
If not, why not ? . :

2. Since one can multiply inches by inches and call the
product *° square inches”, can one multiply apples by
apples and call the product “square apples”? If not,
why not ?

3. Can one multiply a number by a negative number ?
{The writer would be prepared to offer long odds against €
this one being answered correcily.) 'S\

The following discussion of the subject is rccommcn'd,é'{:l\
1o the atiention of all those who feel at all uncertain about
the answers to the above guestions. w'\'\'

Multiplication in algebra is a generalisation)of the
corresponding process in arithmetic. W¥vidisdulibreforerg.in
go back for a while to the multiplio@ﬁon tables :

3 X 5 — 15, Three multiplied by fivel ¥ fiftcen. We
learned it Dy heart a long while agovang have probably
never given it another thought.  Giying/it another thought,
we realise that it means o

§X5=3+3+HLg+3+3=15

that is, five groups of threg ones combined together make
up the group that we haygé 2greed to call fifteen. In other
words, multiplication, {\addition, a rather special case of
addition in which At[\he numbers added together are the
same as onc another. = We owe a great deal to the ingenious
person (probahly;a Greek or an Arab) who realised that
this special case” of addition could be written down in 2
very short fway.

Expresiinig the process in algebra terms, that is, by
means(of letters which for the present will be taken to
meanany positive whole numbers,

AN

&\l aXb=a+a+a+ta
N\

written down b times.

Notice that although a and & are both numbers in the
case of pure arithmetical multiplication, there is a difference
between them when the process refers to groups of things,

31



BASIC MATHEMATICS

which things must of course be things all of the same kind,
whether volts, amperes, cabbages or kings, “a” is the
number of things in each group, and *“ 4 is the number
of groups, so that 2 X & means ““ 4 * groups of ““ ¢ ” things.
On the other hand & X ¢ means *a” groups of “ &7
things. We can see that the total number of things is t
same in the two cases, Starting with *“ & groups of ©* &
things, take one out of each group. This will giveg
group of “ & ** things, and since this process can be rgpeatea
until all the ** g things in each group are used upjthat s,
“a” times, the final result of the rearrangement will be
“a” groups of “ 57 things. In symbols thisis

(@ % 8) = (b X @)un(\

It is one of the most important propsities of the process

www dbfaulibipliceri®oim and is called the Law of Gommutation.

In (a X &), “a” is called the multiplicand and “ & the
multiplier. (¢ X &) is called\he product of *a” and
“bh*, In practice the explicit multiplication sign or
St. Andrew’s Cross is often ‘omitted, or replaced by a
dot, thus "
a :><'b = a.b = ab.

The product {e %'b) can be considered as a single
group and as such can be multiplied again, for example,
{z % B) x 6., Kurthur, it can be shown that

(ax By Xe=ax(bxe
The proof is not immediately obvious, but it will not be

given{Tn"full as it would take up rather a lot of space.
Tb\e?ﬁfst step is

A\ {a X b) Xxe=(bXa} Xc

«\\ " By writing out the right-hand side fully, and by re-

" grouping the symbols, it can be shown that
(fxa) Xe=(0bx¢t} Xa
=a x {b X ),
so that

(@ xb) Xe=ax (b xc),
or

{ab)c = albe).
92



ELEMENTARY ALGEBRA

This iz known as the Associative Law for multiplication.
By combining this with the Commutative Law it can be
shown that

abe = bra = cab = cha = etc,,

wnd since the whole argument can then be repeated with
"X b X ¢) X d, and so on indefinitely, we may say at
" ke that the result of multiplying together any number of positive
~iole numbers is independent of the order in which the operations
ire performed.

) . . O\
“Returning to ¢ X b, suppose 2 is the sum of two numbers \

¢ and d, that is, .

a=c¢+d >
Then LV
axb=(¢+d) xb \V
= (¢ +d) + (¢ +d) + {¢ 4,

written down 5 times. &
Therefore by the Associative Law for. agl@itlon

(0‘%"de5=({:—|—5+5+6+6+;“:‘_ . '
é wiritten down b times)
+(d+dAd+d+d+ . .

W\ written down & times)
= (¢ % &) + (d X°%),

and since
(¢ 4+ d) @b =5 x (¢ +d),
we have A\
b x (c#h‘:(_bxc) + (b x d),
or \7

B d) = be -+ bd.

This is knowfi\ag the Distributive Law, for a fairly obvious
reason, (Rhe“process can clearly be continued. Thus if]
in the fka e,

S\ h=c S
Nt d) =+ e+ d)

’ = (e + f)c + (¢ + f)4d, as already shown,

= ¢ + fi + ed + fd.

. The general character of the process will not be expressed
in words. It would take too long. The algebraic symbols
tell the whote truth much more concisely.
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BASIC MATHEMATICS

15. MULTIPLICATION AND NEGATIVE NUMBERS

In terms of the original definition and of the inter-
pretation which has already becn found for —a (see
Section 6) the meaning of — & X b, where g2 and & are
positive whole numbers, does not present any difficulty, for

(—a) xb={(—a)+{—a) +{(—a} +{—n ..«
written down & times)
= -—{at+atata...et, ¢\
written down & titges).
= — {a X §). ’“\’
But what is 2 X (— 5 ? According to the\ original
definition it would be S

www dbraulibraf Xk =4 Ta ta a4 eie’, )
) auttbrat y‘oré_m ert:t&{l:down - b times.
But this does not mean anything. ¢I€is literally nonsense.
Nor can we get over the difficulty by writing

ax{—b={—hxe=—(xa,

for this law was only proved o positive numbers. Actually
there is no way out of the difficulty, or rather, there is no
difficulty. There is sithply the plain statement that one
cannot muliiply azmimber by a negative number*® (see
question 3, Sectiqﬁ,\rz;). But then, who wants to?

It is true that later on there will often be occasion to
pretend to multdply by a negative number. For instance,
a number/A$e”’ can be multiplied by *“ 8 giving (a X §).
Its sign™CZn then be reversed, giving — {2 X b). To
save tim¢ this can be described as multiplying by — &,
butGh fact it consists of two guite separate operations.
Mctually the writer has never come across any case in
which the application of the laws of multiplication to
7\ “positive or negative numbers indifferently has led to a

* T'his statement is calculated to raise clouds of dust from the pages of agitated
and outraged textbooks. It is possibly a position that could be blown to pieces by
the “ big guns ” of pure mathematics, but this work is being written, with a strong
practical bias, and the writer hopes to be able to aveid the mtroduction of incom-
prehensible ideas into the fundamental definitions, The standard textbooks
usually take 3 perfectly plausible but not very useful way ouwt of this apparent
difficulty. Having shown that @ = & = b x ¢ for positive numbers, they say it

shall be so for negative numbers also. In other words the symbol X is so defined.
But since we can then no longer understand the process we are not much better off.
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false conclusion, but that is almost certainly due to the
fact that in every case the apparent process of multiplication
by a negative number admits of some alternative explana-
tion of the kind illustrated above. In all that follows,
therefore, it will be considered possible to multiply by a
negative number on this understanding.

16. THE MULTIPLICATION OF NUMBER GROUPS. ZERO . o
IN MULTIPLICATION ¢\
Consider the product a X (8 —¢). In view of the QO
discussion in Section 15, it will be considered permissible,
irrespective of the sign of (b — ¢), that is, whether b oor
b < ¢, to put ¢
axX (b—¢)y={—¢ Xa
in which form the right-hand side can be writich but in fuli
exactly asin Section 14. In this way it c&if Hiblsay org.in

(b—¢) X a=(bxa) —%{ a),
that is, « \J
a{b —¢) = (b —¢)a=baa = ab — ac.
If & = ¢, there is another way of'artiving at the same result
which will give a furtherl¢onclusion. — The group
a % (b — 1) will obviously\contain one @ less than that
represented by the groupl¢ X &, so that

fax W) +a= (@ xb).
{a XA 2)} + (@ x 2) = (@ X &),

and so on up o
X (b — 9} + (@ x o) = (2 X b).
Now ag§ing’ to each equal number the negative number
- (&EX )
(@b — )} +{axe)—(@axe) =(@xd —{ax €)s

iﬁiild’:since

Similarly

+{axe —{aXe) =0,
ax (b—¢)=(axb) —(axXc).
Now continue the process further, by increasing ¢ until
it is equal to &. Then
ax (b —b)={axb) —(axb)
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that is,
a X o=0.
Also from the original definition,
¢ X a=0+0-+0 4+ 0 etc.,
written down a times
= 0.
This shows that the symbol o obeys the Commutative L‘:Qv,
and that the product of any number with zero is zget0,
Returning to . the multiplication of number grsups, in
the product N
(b —¢) Xa=(bXa} —(c X,az,.
suppose that a is itself the sum of d and g that is,
a==(d — e)

ww w Pgegplibrary org.in

ad
\ NS

’»\’ 3
S "‘.’

\‘;

(b—6) X (d—e) {bx(d—e}\}ﬁ{cx(d_e,}
{(d—o’))(b}—{(d——e})(r;}
{(G&Xb (e x B)} — {(d x ej—
(«g’.’;&b)——(exb} —{dxe +

bn

that is, - 7
(b —c)@—e) =dh — ed — be + e,

in which it i ‘en that each number in the first group is multiplied
by every msmb%\ in the second group, signs being combined according
to the rules diready established in the section dealing with the
combingtion of positive and negative numbers.
N the case of addition, the meaning of the letter
symbols can now quite legitimately be extended so as to
\imzlude both positive and negative numbers.
An interesting special case should be noted at this point.

{x —a){x — &) =xx — bx —ax + ab
= xx — {a + &}x + ab,
and if & = qa,
(x —a){x —a) =x¢ — (2 + a)x + aa
= XX - 2agx -} 4d.
In this last expression, we have for the first time algebraic
symbols and ordinary numbers in association. There is
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obviously no reed whatever for any given expression to be
made up either of letters or explicit numbers exclusively.
Nothing more need be said about this for it introduces no
new ideas, though as a matter of fact it does introduce a
new word. A number associated with a letter symbol
in the way that — 2 is associated with x in xs — 2% + 4 is
often called the “ coeficient ” of the given letter. This
name is also applied more generally to one member of a
product which remains constant while the other 1s allowed

to vary in magnitude under given conditions. Thus if xis{
allowed to vary, the — 24 in xx — 2ax - aa could be .

called the coefficient of x. Lt is not an entirely fortugate)
choice of word, for ** cfficient” is always used adjcct'q&ly in
common speech, whereas it appears substantively in e
efficient ”, the literal meaning of which i85 ¢oioEkebra;

The form of the two products just congidered shoul
be very carefully observed, for they play g%ﬂﬂgc part in the
practical applications of algebra. Itywill' be scen later
that there js a shorter way of writing them, which does not
of course affect their general charaeter.

17. RESOLUTION JNT0 FACTORS
The rcverse (not the ingerse, which is something quite
different) of the process{@escribed in the last paragraph
is at least as important 3" the direct process. It is called
“ factorisation > or *resolution into factors ™, and comnsists
of the expressiop™\of a more or less complex group of
numbers in thefform of a product of two or more terms,
called © factotsy”, Thus the factors of xx - (@ -+ &) x -+
ab are (x ‘@) and (¢ —$). Take for instance 2x — 71 +
12. This.can be written xx — (4 + 3} % + {4 X 3) and,
compaging this with the general form, it is clear that the
factdrs of this expression are (x — 4} and (x — g}, that is,
P
O~ st — 78+ 12 = (x — 4) (x — 3).
At present the only method available for {actorising such
expressions is that illustrated in this example, namely,
** inspired guesswork *, or what the disrespectful or possibly
envious poct described as * cunning low, meet for things
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BASIC MATHEMATICS

problematical *. Later on some more certain, though, in
consequence, rather less exciting methods will be discovered.

18, THE PHYSICAL APPLICATION OTF MULTIPLICATION

The main interest of those for whom these articles are
being written will be the physical application of the
processes of mathematics.  This is what distinguishes
practical or applied mathematics from pure mathetnatics
considered as a science in itself, O

Two questions involving the physical meaning of the
process of multiphication have already been raised in
Section 14, and these questions we are now{ina position ta
answer, G

The physical aspect of addition présented no great

v AR ar [ OREAR clear that thingsyteuld only be added

{

..\:.

S

O

together in the arithmetical sensg j%éhey were things of the
same kind.  What s the correspupding rule for multiplica-
tion 7 The fact that one canndbt multiply three oranges
by four apples and equallfoednnot multiply three apples
by three apples suggestsythat one car multiply neither
things of the same kind nor things of different kinds.
And yet we talk of miltiplying volts by amperes and inches
bv inches. Doegihis mean that in some cases one can
and in others gzi'n%mt multiply together things of the same
or things ofkdifferent kinds ? That if the result means
anything one can do either of these things, and that if it
does notyomc cannot? Some will perhaps be willing to
accept Whis as the truc explanation. Actually it is not an
exg\ljmation at all. It is a mere statement, and not even
arué statement.

\NThe pure mathematician would probably dismiss the
3 question as meaningless, saying that multiplication is an

operation with pure numbers and that is all there is about
it ; which is quite true as far as it goes, but not very
helpful.

A more uselul answer has already been indicated in
Section 14. Multiplication is the addition of 2 number of
groups, and, physically, a group means a group of things
which must all be of the same kind. Thus one of the
factors of a product must be interpretable as a number of
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groups, and the other as a group of similar things. But
liow is this to be related to the appareni process of
multiplying volts by amperes and calling the product
“watts 7 ?
To trace the connection we will take an instance which

is sufficiently novel and ridiculous to be free from any
preconceptions.  Returning to our three apples, let it be )
supposed that one of these, following a well-known pre- (N
cedent, falls on the head of a philosopher and makes him ¢\ ~
think. It can even be supposed that the harder it hits himy
the more it will make him think, so that if it falls fromia’)
height of one foot it produces one theory, if from twe feet,

two theories, and so on. Suppose now that each ©F these

three apples falls on the head of the philosopler from a
height of five feet.  Each apple now produges iy gﬁ?oriqs. .
Each apple, so to speak, rcggescnts a%ro%}ygﬁ%’ca coricy, 2T BN
and to find the total number of theorieg ~§1s}cluced by this
profitable though perhaps painful episode, we combine
together as many groups of five theorics as there are apples ;

that is, three groups of five theorigs® Actually, however,
life is too short to permit our being as explicit as this on

every occasion, and we wouldiquickly form the habit of
saying that we multiply th€ height by the apples and call

ihe product theories, just\as we have formed the habit ol
saving that we mult'KB{ the volts by the amperes and call
the product watts-%a very good habit too, provided we do
not make the mistake of thinking that we really mean
what we say. N

In the elegitical example it is a matter of definition and

of experiefioe”that each ampere in “ falling through > a
potcntiz‘rkii'ffcrencc of five volts would give rise to a group of
{ive watts, and three amperes would therefore give three
groups of five watts.

“\Fhus the physical meaning of the process of multiplica-
“ién is derivable from the ideal or purely mathematical

meaning, and the application of multiplication in physics

is seen to be of the same essential character as ordinary

arithmetical or algebraic multiplication.
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Examples 1

1. Distribute {that is,  multiply out ”’)
(a — b) (b —¢) (¢ — a).

2. Find the magnitude of the number . <\
{(xxx — 6xx + 112 — 6), whenx = 1, 2, 3, amﬂl{}s

3. For what values of x will {(x — a} (x — &) @{w- be

zero ? N
4. Find the factors of <2>
N\

(@) xx — 7x 4 10, \\Q,
dblaui@rﬁﬁj}'éx 5 0, ¢ \>\

(d) aa — 100ah —|— 9gbb, o (¥
(&) aa — bb. i}v
N
\3&;

N\
S
N

S\ Y
3
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19. DIvisioN

Following the same method as for the other fundamental
operations, we will approach the general or algebraic
idea of division through the familiar ground of arithmetic.
What do we really mean when we say that 15 divided by
5isg? Actually, of course, it is the mere repetition of a
formula by memory, but the real basis of the formula 1s
this : If the group called fifteen is separated out into five O\
equal groups, each of these will be the group that we call~
three.  In other words, the process of dividing 15 by ¢~
consists of finding that group, five of which combitied
together will make up the group called 15. Thug’ there
are really threc steps in the statement, as the\ reader
will be able to prove to himself if he will thinkvabout it
carefully cnough. The steps are w\\,}&r{iﬁl-aulibral.y_m,g_m

(15 +5) X 5 =15 "
because that is what division means, fpliox:vcd by

3 X5 =154
as an act of memory, [ollowed bythe deduction

(15 +.508= 3
The important step for @iix present purpose is the first,
hecause it shows the reader that the formal algebraic
definition of divisiog{ ™
xk(*a by xb=a

N

is identical in €8rin with that which he already accepts,
though perh@s unconsciously, as the definition of division
in ordinary @ 1thmetic.

The 'thing to notice about the operation of division
so defined is that (¢ - 5) may or may not be a number
in ¢he original sense of that word, that is, a characteristic

roperty of a group of things that can be counted. Thus
{%15 + &) is the number 3, but {4 < 5) is not a number,
because there is no simple group 5 of which combined
together will make up the group 4.
However, as practical mathematicians, we shali be more
interested in quantity than in pure numbers, and in terms
of quantitv {4 - 5} is an idea that presents no difficulty
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whatever. We can take any quantity, such as a journey
of four units (for example, inches) in a given direciion and
divide it into five equal journeys without turning a hair, let
alone splitting one. Then if the number 4 represents the
original journey, each of these smaller journeys (callit ““ 4™}
is such that ,

atai-a-+a+t+a=4,

that is, ax 5 =4, ;O
so that a=1(4 =5} AN
in terms of our original definition. Dy

It will be convenient to introduce a few mom special
terms at this point. If (¢ = b) = ¢, wherc, 4 4% a number,
then g, &, and ¢ are called respectwcly dw\rdcnd divisor,
and quotient. The sign <+ is not a velyvconvenient cne

www.? raulibrar

'y

ore . » . a
ase I pradéicd, and (¢ + b) is u’s’x}e{llv written - Of, t0

get it on one line, afb. A group'¢ \Ib which cannot be ex-
pressed as a number, and in{Wllich 2 and b contain no
common factor greater thand is called a fraction, & being
the denominator and a l.h(; numerator. In practice these
names are often apphed o any expression of the form /8,
a useful extension of the meaning of these words—indeed
a necessary onc, dihce until @ and b are given specified
numericaj valua}me cannot say whether g/b is a number
or a {ractiont

Ttis unpoﬁnt to realise that as far as the interpretation
In terms of® quantity is concernced there s no essential
differénce’ between 2 whole number and a fraction. In
factgitesame quantity can be represented by either. Thus
agiven weight may be represented by the number 7 or the

ction 7/16 according as to whether it is measured in
ounces or pounds. Here the representation in the first
place by a number and in the second by a fraction is seen
to mean nothing more than a difference in the unit of
measurerment.

One very important conclusion follows at once from
this. The Laws of Commutation and Association and the
rules relating to sign in the addition and subtraction of
numbers were stated and demonstrated in terms of magni-
tudes—lines or journeys of various lengths represented by
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symbols which in their turn represented numbers. it
would make no difference ta the reasoning employed if
the units and lengths had been such as to require the use of
the {ractional form for the numerical description of the
various magnitudes. We can therefore proceed at once
to the conclusion that the Laws of Commutation and
Association and the rules of sign apply without modification
to the addition and subtraction of fractions, and the &
symbols used in the relevant preceding sections can be given.\ ™
this additional freedom of interpretation. They maw
represent positive or negative whole numbers or fractigfisy
Giving to the word fraction the extended gicaning
which has been mdicated above, the dctcrminjng\bf the
rules of algebraic division really amounts to finding out
how such quantities enter into the operatipulhth @Y org in
subiraction, and multiplication. A
First, however, it will he well to;&sn‘sider how the
negative sign will enter into the opgeraﬁon of division as
defined above, for it will be a conyénience if the letter
symbols used in the remaindef of this section can be
given their nnrestricted meaning as positive or negative
numbers. N\

N

20, TIE NF.(':{TI\-’F. S1GN 1IN DIvIsIon
The statement ¢ \J

(Ke b)) x b= —a

presents no difficulty. By interpreting it in terms, for

instance, o[MK€ journcy units used in connection with

simple additien and subtraction, it can easily be shown that

OY (—aih=—(a=h

thads® (— afb) = — (e/b)

¢ '{Pﬁis iy division ¢/ a negative number, But is division by

C \A“ncgative number a comprehensible operation ? If so,
what does it mean ? In any case, its meaning must be

consistent with our definition of division, so we can start
with

PN

fa~—byx —b=a
which brings us back to multiplication by a negative
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number. Now an explanation has already been given {Sec-
tion 15) for the apparently incomprehensible operation of
multiplication by a negative number, and it has been
shown that no mistake will arise from using the formal rule

{a X —d) = — {a X b).

Applying this rule in the above case we have O\
a={e+ —b X —b=—{(a~ —b) x5
Therefore &N
fa+— —b) Xb=—a o\
Comparing this with the prevmus result, 'Eh&ll\ls
(—a+b) xb=— ,

N ‘.

ww v et iar gk %ibparent process of, dﬁ‘lsmn by a negative

number will be consistent with~ }su}‘ 1ntcrpretat10n of
multiplication by a negative numbt:r if (g — — &) is taken
to mean the same thing as — e = &}, s0 that

(6 +—b)=(2arb) =— (a5
Applving these formakYules to the case (—a} + (— &)
will obviously give 2

(9 = (=5 =@+,
Thus we havesthe three general rules for the combination
of signs in diyision :—

MmUS divided by Plus is Minus,.
Plus divided by Minus is Minus.
\V[ums divided by Minus is Plus.

se, however, will not impose any additional burden

','«Dn the memory, for they are the same as those for
~ mull:phcatlon

Now that an intelligible interpretation has been found
for division of or by a negative number, together with the
rules that apply, the letter symbols may be taken to
represent any positive or negative numbers as practical
conditions may require. On this basis we can proceed
to deduce formule appropriate to various operations with
the fractional form,
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2T. Variovs QPERATIONS WITH FRACTIONS

It the following paragraphs the name * fraction *’ is taken
10 mean any eombination of the form (a = ), where g and &
are positive or negative nombers. The reader is asked to
obliterate from his mind as completely as may be any
preconceptions about fractions based on imperfectly or even
misunderstood rutes remembered from school days, and to
think instead of the operation of division as defined A .

completely and exclusively by the statement ' \ \/
(e +b) xb=a \
(@) Reduction of a frastion to its lowest terms. “‘ 3
Suppose axXp=c¢ '»’;\'\'
bxp=d v/
Then (axp) = xp=( l‘f—wi?‘)iwa“"b"GTY-o"g-l“

and by the definition of division, ~&
(a % p) = {{a X p) = (b X AR (b x 4),

thatis, (@ X p) = {¢ +d) x (8 X, 8.”
Therefore (e xp) = {(¢ — d) X B} 0 4,
and a = (¢+d X.-i’;’ X

But a = (a8 =+ b X b,
Therefore (@ — b) = (c‘% 4,
that is, (@ X p) =+ (&'\’xjo) = {a = b),
or > apfbp = afb.
This shows thdfaf the numerator and denominator of a
fraction confain a common factor, this factor can be
removed fegmh each without altering the magnitude of the
fractiois\This process is called the reduction of a fraction
to itf;!’o'%est terms.

%

m{lf)f:'Diszribution of densminator.
) By the Law of Distribution in multiplication,

{la+e) + (b=} xe={{a+re) xe}+{( =) X ¢}
=g + b.

Therefore, by definition,
(a+c) +(b._g) =(d+b) &
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a+b

[

or —+

It will be a useful exercise for the reader to prove for
himself the statement

c+{a+b)=1{+a + (c =5
If he succeeds the truth is not yet in him, for the proposition

is false. The attempt to prove it will assist in 1mprc5511\g
its untruth.

{¢) The addition of fractions.

The results stated in {(¢) and (b} taken tog’cthcr show
how any two fractions can be added together. ,a{ltl expressed
as a single fraction, for

'\

.\'

www.dbraulibrary, o:g_nad ad —I— be
S G =t bd% '

N

d
The extension of this process to gwc
+ a;{'f + cbf | ebd
f v bdf

is obvious, but the readcr Ig adwscd to check it for himself.
A little further thoughtvwill show that these formule are
illustrations of the fdch that only groups of like things can
be combined 'trﬂ.}nhctlcally

In virtue of¢the'Law of Association the addition of any
number of fracﬁ\ons can be represented as a single fraction
by repeating.the above process as often as necessary, It
should beChoted that the numerator of the combined
fraction\is obtained by combining according to sign the
prod‘tlcts of each numerator with all the other denominators,
the\ g1 being considered to be attached to the numerator

m each case. Thus

a_ ¢ e __ adf — chf + ebd
& d'F bdf '
{(d) Multiplication of a _fraction.
Since a fraction, interpreted gquantitatively, is not

essentially different from a whole number, the multiplica-
tion of a fraction by a whole number does not involve any
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new ideas at all. It is worth while to notice, however,
that the resuit of any such multiplication can be represented
as a single fraction.

(la=b xXb=a2a by definition.
Therefore (a+b) xbXe=aXce

(a =3 Xexb=axec (Law of Com-

mutation), .
that is, {{a = b) X ¢} X b={(axe) )
Therefare (@a=b) xe=1(axc b O

by the definition of division.
Ir fraction form 4D
(alp) X ¢ = (acfb). \\

{¢) Multiplication by a fraction. , )

Tl A T_‘EIUI] SATE O E LN
Remembering that the fundamental ‘db"ﬁ%?UOn olf the ' €
operation of multiplication is that conpal?né’d in the state-
ment A

axXb=a+a+a+ta+ta-t ele, b terms in all,

it appears that multiplication &p. @ fraction is not a com-
prehensible operation, and inpoint of fact it certainly is
not. There is nevertheless\ah operation that can con-
veniently be described,@s. multiplication by a fraction
provided its rcal chargeter is clearly understood. The
fraction (¢ + ) cadhtmultiplicd by ¢ giving (2 + ) X ¢
This number orMraction can then be divided by 4, giving
{(a = b) X ¢},5nd. Now this process of multiplication
by ¢ followc by division by d can be expressed for the
sake of abbréviation as multiplication by (¢ +4). In
ii"actirl{al\form the operations can then be written

‘ a._c¢
\ X
'"\:I.t\’wi.ll be assumed that whenever the apparent process
\_of multiplication by a fraction arises in practice it will be
legitimale to re-interpret the operation in the above
manner, that is,

XE:{{&-:—b) X ¢} =+ d.

o B
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In fact this assumption is necessary, for only on these lines
can a comprehensible meaning be attached to the process.
On this understanding we can proceed to find the single
fraction that shall have the same magnitude as the * pro-
duct” of two fractions. Suppose {¢ — f} to be this
fraction. Then

{asb) xc}+d=(c+ f) ‘
and by the definition of division ¢\
{a b)) Xe=(e = f) xd S

N

Now it has been shown above in para. (d) that )+
(@b xe=(axec)=b N

therefore (@ Xe) =b={(e= f) Xdo\

and, by definition, (a2 X ¢) = (¢ = f) %" b

www.dbraulibrary.org.in = (¢ = SN2 (B x d),
therefore (axe) + (b xd) =+ f),
that is, \$

¢ . e . ac
—EXEZ{(QTE’) XC}T,?{:(QXC) T xd) =5,
The extension of the aboveyéasoning to give
LEVEANEAN X — o6 etc.
5% a XN et
isa straightforwgyc(application of the Law of Association.

(f) Division %ﬁacﬁm by a fraction.

Strictly speaking, division by a fraction is no more
intelligibleythan multiplication by a fraction. It can casily
be shown;” however, that its meaning can be derived
immedigtely from that of multiplication by a fraction, if it
I;gcébéumed, as it obviously must be, that the apparent

ess of division by a fraction is consistent with the

wormal definition of division.
'”."Putting (a+b)-:—(c+d)=(g+f),

then by the definition of division,
(@b =(+f)x @+
= {(e - f) X ¢} = d as above.
Therefore (@8 xXd={(e+ f) x ¢,
and, by definition, {{a + 5} X d} = ¢ = (¢ = f).
48
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Therefore (@b +(c+d) ={ab) xXd+¢

and on the understanding indicated in para. (¢} above, the

right-hand side can be written in the form (aft) X (dfc),

a . ¢c_a 4 _ ad

5°d b ¢ b

This shows that dividing by a fraction is the same as

multinlying by the same fraction inverted. The result of

inverting a fraction in this way is called the © reciprocal ¥ A

of the fraction. R\,
Since ¢ = ¢ — 1, we have as a special case O

(ajb) = ¢ = (afb) X (1/c) = afbc. N

Thus division by a number can be represented as multipli-

cation by a fraction having 1 as numerator and the number

as denominater, !

giving

www,dbraulibrary org.in
22, THE DIVISION OF ZERO BY A NUMBER
There is no difficulty about this) operation. The
fraction {0 -~ 4), if 1t exists, must have a meaning con-
sistent with the definition N
{0 +a) X @50
for any positive or negative valte of . Now, as shown in
Section 16, N
AQ X & =0,
Therefore the statemc?lt\that
K\ (ora) =0
fits in quite satidfactorily with the rest of our rules and
definitions. {0
23. Tug/Pivision oF A NUMBER BY ZERO, AND THE
() CoLLAPSE OF MATHEMATICS
Wh’h is the meaning of (a -~ o) ? The meaning, if any,
must be consistent with the definition
Q@ (a+0) X o0o=a
But for all positive and negative values of b
bxo=0
and the reader can easily prove for himself that this is
equally true for any positive or negative fraction. There-
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fore (@ < o) must be something essentially different from a
whole number or a fraction, and the rules of algebra must
not be applied to the group (¢ — o). To prove this
statement we will proceed to wreck the whole structure of
mathematics by assuming that they can be applied to it.

a b _(ax9+(x0)

ad A A T by Section 21 N\
ots £ X0 4
_ac Oy
o' S\

Now let d be any ather number different from &y, \"';.[”hen

ote = Tixoe  LC
ac v
www.dbraulibrary.orgin = e \
Therefore \‘\
a ,d a [ BN\
oTe=5 Ty
4 5.3
¢ BN
and finally N
W= d.

Therefore any number is equal to any other number,
and the whole of mathematics is nonsense,

In fact, the\group (¢ + o) is a germ of insanity that is
lable to infect the most sedate of propositions and set it
babbling{gibberish. If at any time a set of equations goes
thus dd%:denly mad and announces that the moon is made
of g{Z}n cheese the baneful effect of division by zero can

\stuspected.  The germ may have crept in disguised as

{sdmething quite harmless and respectable, for instance,

~d%division by (@ — 3) at one point, followed at a later stage
) by the condition “leta = § .

\ )

24. THE FUNDAMENTAL RULES Or ALGEBRA—
GENERAL CONCLUSIONS
Intelligible interpretations have now been found for
positive and negative fractions, and for the addition,
50
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subtraction, multiplication and division of positive and
negative fractions. We can now proceed to the' full
generalisation of the letter symbols. In any expression in
which letter symbols are associated with all or any of the
operations of addition, subtraction, multiplication, or
division, the letter symbols may be taken to represent
any positive or negative whole numbers (integers) or positive
or negative fractions as the conditions of the problem may :
require. 2,
The writer has deliberately refrained from presenting ¢\
any tabular summary of the rules and formule so far by
developed. Any reader who is new to the subject 18}
strongly advised to do this for himself, as this will helpdim
in the understanding and memorising of the.mbre im-
portant conclusions. Heis also rccomme\r&@utai %fanggqrise
himself with the technique involved by woi e ot ot
more examples than can be presented in thellimited space
available. Plenty can be found in an) &lementary text-
book of the subject. An even better,{and certainly more
interesiing way, is to make up a number of examples for
some imaginary pupil. N '

org.in

25, MaTIEMATICS As A TrovgHT-SAviNG DEVICE

Before going on to;fi}e interesting elaborations and
developments of thé fuhdamental rules of algebra it will
be well to say a ﬁnasl\word with regard to the character of
mathematics in geémeral and the right way of applying 1t.

The writer has-been at some pains to invest the mystic
symbols of piathematics with a precisc and real, one might

almost g4 homely, significance. This i stricily in

accordanpe with the spirit of modern mathematicians, who
are hécoming increasingly distrustful of any purely formal
symbelism of doubtful interpretation, and who seek to base
£'theit science on a few simple ideas about number or magni-
ttde. Clearness in the initial ideas is essential, a_nc! this
clearness has to be paid for in hard thought ; but it 15 not
for a moment suggested that all the ideas involved are to be
turned over in the mind every time the fundamental

formule are applied. In fact, nothing could be farther
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from the object of mathematics, which is, though it may
sound paradoexical, the elimination of thought. Thisis very
clearly stated by Professor A. N. Whitehead, a mathema-
tician who combined the intellect of a scientist with the
imagination of a poet and whose book, dn Introdustion io
Mathematics (Home University Library), can be very warmly
recommended to ail who are interested in this subject.  The\
object of the symbolism of mathematics is to enablens’
to ** make transitions in reasoning almost mechanically, By
the eye, which otherwise would call into play the higher
faculties of the brain. It is a profoundly ¢Erkdneous
truism , . . that we should cultivate the habitjof thinking
of what we are doing. The precise oppgsife Is the case.
Civilisation advances by extending the\number of im-

worwRFEFARE ARETASIQNH that we can perforgQ without thinking

e

about them ™, "This may sound likéa glorification of
“rule of thumb ”, but it is “qule of thumb > with a
difference. To apply 2 formuld\without thinking about
it is a gesture not unworthy, 6f a mathematician, To
apply it without understanding it, or without ever having
understood it, is at bestsa pis aller, and at worst an un-
intelligent faith in Munibe-Jumbo.

&
o\

£ $

L W

O
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Examples 11
1. Show that

3 .7 . 9 4 6 , 8
10 + 100 + 1,000 + 10,000 + 100,000
__ 37,968
~ 100,000° P r\:\’
2, If 11 _¢ O
b 4 ab’ . '\’«
prove that ac + b¢ = aa — bb. \."\'\‘\,"
AS
3. Show that \a\rww_{li\raulibl'ary.ot'g.in
4D
JEERE a. ! ‘
i (a ) be ‘1“ h )j

i b a »; ] _I_.
TLI#EE) (I—_) ( E) N —-b+ b—-—t F e
4. Prove that if "\
RoR\Ry + R[,Iui:\’}L R,R.R, — RyRyRs = 0,
N\
;\ -+t
R, 7 tE TR

Note, —R‘o, R,, R,, etc., are simple symbols, like 4,
b, c, etc\ “The subscripts are just a convenient way of

fﬁ\’%ulbhmg them. 'Fhe usefulness of such subscripts
appear later.

RRy _
R, + Ry
where R, and R, are positive numbers of fractions,
is less than the smaller of R; and R

6. Simplify "%:;2 and % If’.
53
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BASIC MATHEMATICS -
7- 3% + 4 = 2x 4 19, what is the value of x ?

8. If xy = 144, find the values of x + 3 when & = 2, 4,
6, 8, 9, 12, 16, 18, 24, 36, 72.

&
&
O
Q
o
A
www . dbraulibrary.org.in ®0\\



Chapter 2

INDICES AND LOGARITHMS

E new come to a very important set of ideas derived
directly from the ideas of multiplication - and

division. A ¢
o
26. DErFINITION OF AN INDEX O
Consider the product @ X b X ¢ x & . . . n factors{ in\

oll, where 7 is of necessity a positive integer, and the other
letters have the full significance of algebraic letter,sijfbols.
Now suppose that the factors are all equah JABAABIEY org.in

Then the product takes the form N

ax axaxa...nfactors

Now just as the sum of # @’s was abl:zrp{ri»zitccl intoa X #,30
the product of n &’s similarly lend&itself to abbreviation,
and the accepted form of abbresiation 18

axaxXaxa...n factprs'i—l (that is, is written) a"

The double symbol on tHe\right is spoken of as “g to the
ath” or “ the nth,power of a”. It follows from this
definition that » raushbe a positive integer.

27, Tug INDEX Law
From the/d¢finition of an index,
N\
\’{Qg.yan:(axaxaxa .. mfactors)

N\ X(axaana...nfactors)
»\:"g'!:(“XﬂXaXaXaxa...m—i—nfactors)
V gl

that is, @ X at = @,

The general result symbolised in this formula will be
referred to hereafter as the Index Law.
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28. Tue NEGATIVE “IxDEX

The word “index™ is put in inverted commas to
emphasise the fact that this is only a manner of speaking.

An index is a positive integer, but it is very convenient
to allow a negative number to masquerade as an index for
the following reason. /

Consider the fraction a™/g?. If m > n, a™ can be writtch

g = g ath = gm—# 3 g by the Index Law, so that\:\
aran = (@t X @Yfar =ar. (O

\

On the other hand, if m < » it can obviously | be Shown in
exactly thc same manner that \'\

amfan = 1/e" ™,
wwrw.dhraulibrar

o A i result, depending on'svhether m > n or
m << n involves a deal of tiresome cofiyersation and would
be a great nuisance in practicess \The nuisance can be-
avoided in this way. Let us white’ 1/g* in the form @~
The symbol a~# is in itself qu;tt micaningless, so we arc qmtc
at liberty to attach the abopemeaning to it if we so desire,
and if any useful purpese® will be served by doing so.
Notice carefully, however that the — n in ¢~ is not sirictly
speaking an index, and a~" is nothing more than a way of
writing 1}a™ Optﬁls understanding,

\\ aPfa® = aM X a "

Now if m = n, a%fa* = g™~ as shown above,
that is{™\ am X at= g™t
,»\':.\ = gnH—n),

ich shows that the — z can be treated as if it were a

'gemune index, obeying the Index Law. Moareover, both

¢\ cases are now included in the one formula, for if m << #,
\m \  then, as shown above,

a”‘fa" —_— If,!an—-m’

and 1/a"=™, in virtue of the meaning that we have attached

to a negative nurber written as an index, can be put in
the form
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I,"'c‘l“_m= I‘ffa—-{m——n}
j— am—ﬂ_
Thus the meaning that we have arbitrarily assigned to
a negative number written as an index has the advantage
that such negative numbers can be treated as if they were
genuine indices obeying the Index Law, and an index can

: . ; \
if necessary be allowed to assume a negative value without
causing us to rewrite the resulting expressions in some other AL
form. A\

20. THE ZERrO  INDEX " \

Again, there is strictly speaking no such thing ag.}th‘é
zero index, However, consider a®/a* when n becomes
equal to m. In accordance with the ideas ¢xplained in
the preceding paragraph www.dbgaulibrary.org.in

amjan = o™ = g° ’z’,\\:

and since a®fg™ is unity, it follows tha:t"a}is unity for all
finite values of a. Thus ¢° an idea which s incomprehensible
in itself, is really nothing more than 2 conwvenient way of
writing ¢” /e, * and its value is uzuty for all finite values of
4 excepta — o,

~ 3

30. REpEATRIPRODUCTS OF POWERS
Since g» X ar = gm{®or positive or negative values of
m or z, it follows fronpvthe Law of Association that
a® g X a¥ X at . . . rfactors
:‘i\ ':am+p:+p+g+ T f,n.rms,

and if (N
N\

this bﬁ&ﬁes
SN gm oo g™ X g™ X g™ . . . r factors
PR \. — am_|_m+m+ e 2 & T b:rmﬂ,

m=n = p ==etc.,

* Some more advanced students will possibly object that &° must be su_mx‘atlgéﬂlﬂ
rore than the cotvenient methematical fiction that it is here stated o be, ke 80 e
a form which frequently occurs in practical physics. For mstancre, o
quantity which changes with time according to the formula # = ot where & o
and b ate constant numbers. When ¢ = 0 the value of » is xea’?, that I8, ¥ Ithmu::.l
be remembered, howevet, that ¢ Teally represents an interval of tme andalsl Ouh
ideally be written in the form ty — £, LThe condition ¢ = U is thug realy e
condition £y = f;, which s in agreement with the above discussion of &
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that is, {am)r = gh*r — g,

As an exercise, the reader is recommended to show from
first principies that this is true for negative values of m and
r, for example, — p and — ¢, where p and g are positive.
This amounts to showing that

N
1

( @ 2N

31. PowERs oF PRODUCTS AND QQUOTIE Mg’\
By writing out in full, it will be found qmtc gas*, to show
that for positive or negative values of n K¢
\.
(a X b =a» X B “\
ww\ABBraulibrary org.in ‘
VIR (appyr = avfon. N
As a particular case of the lattcr,ﬂv‘hcn @ =1
(1/b)n = 17BN 1 /b7,
By writing 1/b as 5~ this is Seefl to be a special case of the
result proved in Scctlon 30 " Notice further that

Qi) = b
m“ 32 RooTs
Consider the¢ s‘t}tcment
aXa\R\aXa . . . niactors = g = &.

Here tlenumber & is described as heing made up of #
factors‘eaeh equal to ¢. Similarly a could be described in
terms‘offb and » as that number which, multiplied together
n girbes, would give the number &. There is, in fact, a
}Q@ogmsed way of writing this, that is,

‘.‘; cIv—'\/rb

\ a 15 described as the ath root of 5.  Thus since

ot

2 X2 x2Xa=2at=16 216
and 2 is described as the fourth root of 16. The definition
of the nth root of & is clearly

(R/Fp =t
There is no special magic about this way of writing the
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ath root of b, and if we wished to emphasise the analogy
with the index form it could equally well be written
b,
the dash serving to distinguish it from b=, Using this way
of writing, the definition of @’ would be

(@*) = a.

Comparison of this definition with the result obtained

N

AN

ahove, that Is QO

(dn)m = am", (“}ﬂ

suggests an even better way of writing the ath ro&&- 4.
L "

Suppose we write it as @ or a®, Then the de%ﬂon of a® is
W,

N N,
(w"l) =d “\ W
X 3
which is in agreement with the formula Yam* = a™, for it
can be put ™y

Q"
Tyn Iw ﬂ',:; ’
4] = gt \N=—= a'= 4.

Notice carefully that avionly a conventent way of writing
%/a. The 1/n is nqt g€ally an index and the application

of the above formula\m the manner shown does not follow
> b3

from the Index Taw but from the definition of "
Tt will be. convenient to carry this notation one stage
further, fqn{a} the definition of the gth root of a” we have
Nl (Yar)t = o
andbY -/ a?) is written in the form P! this becomes
'"\} (a'p,fg)q = av,
which again is in agreement with the formula
(a¥)m =a™*.
This suggests that a*? will prove to be a convenient way
of writing the gth root of &7, so that we have as the definition
59
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of ¢ the statement
(a?fq)q = aP.

33. Propuct oF Roors

We must now see to what extent the pfg in a?/? can be
treated as if it really were an index. \

Since (aP)7 = gP, ,’\t\'
{@y = a, O
that is, (aPi)r = ar, by.Sé'c’I:tion 30.
Similarly, (@i =ae. LAY
\a\rwr{‘r}_EEﬁgﬂllﬁbrar‘sk’fbl’:@.% X ()3 = aP* X & v
that is, (g > @)P = a(}’f"?(\?
This shows that {27 g™} is tbé’g}th root of a5 which
A N
we have agreed to write in_thg form ¢ # , so that
aANT e (Do
(@R a") =a & = a(q ")

The suggestied form of notation therefore has the great
advantage that.thcw\formula

(NS amx at == gmtn

\ )

can be applied when m and n are fractions. A simplc
'cxtensio:&*pf the above proof will show that it will stll
apply€yeén when m and » are negative fractions or when
eitb\er\i'é negative.

N

W - .
'\'\\34. FULL (GEXERALISATION OF TH¥ [NDEX FORMULZE

NS

AN Assuming only that a?'? is a convenient way of writing the
~\J

gth root of a7, that is, on the basis of the definition
(a"?)1 = a?,
it will be quite easy to show that the formulz given in the

preceding sections can all be applied when the indices are
fraciiohal in form. For instance, to prove that

(am)n = g™,
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where m = pjg and n =t/s, p, ¢, 1, and 5 being integers,
we have, by definition,

and {(a%):_}'f* _ {(al;)r}q
- {(a%)q}r C
= @y kS

so that by definition

§ a_fl' ~A ™

‘The proofs for the remaining formule’ “{ill_be qmitted
to save space. They will follow gxactly similar lines to
that given as an example. To(resime, It may now be
stated that for positive or negative integral or fractional

VD
values of m and » NS
o = i)

\\ (am)n = a™®

A {ab)® = amb®

%

3

O (a/B)» = ar{b.

The re£de¥ should notice very carefully the logical
sequened_of the ahove demonstration of the generalisation
of th,c%ex formule, This demonstration is put forward
withiall due deference as an alternative to the usual text-
book treatment, in order to show that the full generalisation

\»\ YeGuired can be obtained without bringing in any incom-

prehensible ideas or any purely formal symbolism.*

* It is seriously stated in some textbooks that the neralisation of the index
formula denendsyon the Principle of the Permanence g%el::ql._uvglent Forms, that is,
A law of algebra which admits of proof subject te certain limitations i8 t1irufe %een]erw ly
li“’.“lﬂef,l the remaval of the limitations is not im:amipa:able with the trut fuhtt  law -
his principle appears to the writer to be modelied on the tactics of t O e
cuttle-fish which, when in difficulties, squirts out a cloud of sepia and escapes in
confusion,
61
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35. AN EXAMPLE OF THE INDEX NOTATION
The products considered in Section 16 can now be written
(x —a){x~8)=x%—(a +8)x +ab
an
(x—a)(x—a)=(xr—a)’=x>—2ax +a%
Further,
(x — a){x 4+ a) = x? — a?
These three formulz, which are three special cases ofyflagy
multiplication of number groups, will prove to be offgreat
use in practical mathematics. \ >

T
<
1

36. Is g® ALWAYS A XUMBERE'\"\?
v AR SN E i O

e ()

(6 —a.

We have so far taken it for grahtéd that if @ and # are

% aad I

numbers, there is some othefhumber, written v, which

fulfils the above definition $3and so there is in most cases,

but net in every case. Suppose a 13 64 and 21s 3. Then,
by definition, ~

LN (644)8 = 64,

. )
and since &« 4% = 64,
we may say tha 64t = 4.

Agairg 8nce 5% = 125, 125" is the number 5. More-
over, sihncé 100 lies between 64 and 125, 100% Will pre-
sumakly be some number greater than 4 and less than 5,
whiatBarrie would call ** four and a bittock 7, that is, four

,éud a fraction. Actually there is no number between
“Sfour and five the cube of which is exactly equal to 100, and
»\.J 100" is for this reason called an * irrational ” quantity.
N\ (This, by the way, does not mean * unreasonable ”. It
simply mecans a number which cannot be exactly expressed
as the ratio of two whole numbers.) However, by methods
to be described later, a number can be found which

satisfies the condition to a very high degree of accuracy.

Gz
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Thus (4.6)° = 97.34
(4.64)® = 989
{4.642)* = 100.03

and so on.  Since in real life there is always a limit to the
accuracy with which measurements of quantity can be
carried out, the distinction between an irrational quantity
and a rational quantity is, as far as the physicist or experi-

menter iz concerned, purely academic. Thus for any N
wark of an accuracy of a tenth of 1 per cent, 100t is 4.64. ¢\
Consider now another case. Whatis 2zt ? By definition, ) ’
(25%)® = 25.
Now (+5)* =25, 0\
and also (— 5)% = 25 (see Section 16), N
Sz;?léhat ;’g: z "_1"— g www.t&ayaulibrary,org,jn

9. N
In other words, 25 not only exists—it\leads a double
life, a sort of Dr. Jekyll and Mr. Hyde: This duality
can be cxpressed \ | %
a5t = o 5 (plus oxdnus 5).
Notice further that any evensgot can be expressed as a
square root, for N\
Y. _x);
azK: (a?’ 2
so that the apth roog éf\e'is the square root of the pth root
of a. It is clear, therelore, that any even root, if it exists
at all, will have.atleast two real values, differing only in
sign. In praptice this implicit (that is, hidden) ambiguity
would be anvinconvenience, since mathematics 15, Of
should bepnplain dealing par excellence, s0 it 18 gcnera:Hy
agreed {hit af shall mean the rcal positive number which
satisfiessthe definition. The ambiguity can now be made
expbieit.
“\ ¥or instance, if X% = b,
then x;:l:biori\/b,
Notice that this ambiguity of sign will not occur in the
case of odd roots.
Thus —3x —3X —3=—2}
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and g§Xgxg= 27
so that {27} = 3,
and (—ent=— 3.
Similarly 321 == 2,
and {(—g2)f = — 2.

N
In words, the odd root of a negative number is a negafive
number or fraction, and the odd root of a pos1t1vc numbcr
is a positive number or fraction.

One other n'nportant case remains, YVhat isy tht square
root of a megative number, (— g)t for mgbanée First
let us simplify the matter a little. Since '\

—9g=—1X9
www.dbraulfbr@y erglim 1)t X (g) (see S\ectmn 31)
=(— 1} X gor KQ X 3.

In a similar manner the square root of any negative
number or fraction can be reduced to the form v —1 % a,
and the feature common™ 40" all such cases is v —1. Alo
any even root of a negative number will depend on this
same thing, for the.3pth root of —1 is the pth root of the
square root of 1. Now there is no number which,
multxphed by Atself will give —1, 5o the symbol 4/ —1 or

(—1)tis, Kar /as pure number {5 concerned, meaningless.
Later onyan\interpretation will be found for it in relation
to quite @diflerent set of 1dcas, and the symbol will prove
to bel®f great service in conmection with alternating
curtent theory. For the present, however, it will be
.uﬂlment 10 say that the square root of a negative number

.\ Is/non-existent as a number, or, as the mathematicians

have not very happily designated it, is an imaginary
guantity.

&
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Examples 1IT
1. Show that (at + at}2 = 4 209 + a, '
and (2 — a)(xt +at) =(x —a).
. @b atble
2. Slmphfy - b%_c_g - am A
Show that it is equal to
abc{al b1 8 — at). \f:\
3. 1 e =a o
at =8, ,ﬂ
a8 = ¥ 4 b2
and af = : %2}
what is the relation between x, ¥, and 1 ? §® ther,
il y = afB what is the relation between x,\is ?d z? ‘
4. Show that {2 -+ )% =a® + gazz ‘—jlr-‘{\i? T 1bty,ary.m &mn
(@ — b)? = a® — 3a%"y 3ab* — B,
(@@ = 8% = (a — (0% + ab + %),
 {a® + %) = (a RbJ(® — ab + b%).
5. What are the factors of (a*,\g %) and of (¢® — &%) and
(o + 597 N\
6. Show that A
\(@+B) Rﬁwm (xc)(ﬁa) B
;5) =G <G -
S

{~\\\‘/
> N\ %
o : ?
F t\w
O”

Nos/

O

™

,.\\
W

%
N

WY

<
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37. FUNCTIONS: GRAPHICAL REPRESENTATION

Any algebraic letter symbol can be considered to stand
for any positive or negative number or fraction. Starting
with some symbol, x for instance, other numbers can he
built up, the magnitude of which will depend in somc
specified way on the magnitude of x. The number 3z Ln
is a simple instance of such a built-up number, and, keing
a number, it can be represented for convenience stmc
other single symbol, such as y. This number 438 then
defined by the statement (or equation) |\

y=3+4 .\Q
In such a connection the number x+3 termed an “in-
dependent variable », the idea being that it is at liberty 1o

wwwidbidelibier nergwm sweet will ove{\the whale range of

magnitude. (¥
The number » on the othethiand has no will of its own
and has to go where x tells 4t ThlS is cxpressed mthc-r

grandiloguently by the phyase ““y is a function of x’
In mathematical shorthand this is written

B = flx).
Notice that the detter symbol f does not in this instance
represent a number, but expresses a functional relationship
between y whatever symbol is written inside the
brackets t;%'erent functional relationships can of course
be represented by other letters,
a | ;  for cxample, F (x) or ¢ (x].
.f\'x o ¥ . Once a particular functional
guide. o .. .. —| relationship has been specified

3

A%” — 2 — 2 !  the same letter should be

used throughout any piecc of
work for that function.
The dcpendence of y upon

el | I

! 0 4 i xcan be emphasised by assign-

ing various wvalues to x and

1 ! 7 | finding the corresponding

: - value of 3, Such values can

] 2 i 10 be tabulated as shown on
Y H N the left.
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An extensive set of tables could be drawn up in this way,
but such tables would not reveal the distinctive character
of the dependence of y on . 'This, however, can be made
quite ¢clear by means of a method of graphical representa-
tion invented by the philosopher Descartes while hewaslying
in bed cne morning

{which just shows the . L . —_
unwisdom of too early b—x s p 5 N
rising). [T i ¢\

Draw two lines OX : : e\
and OY at right @ ; L 1y
angles (Fig. 7). Any i i 'T K
related pair of num- : f O
1l:):crs xandycannow | . | _I_,\ —ix

e represented by a Orwrw. dbrdulibrair -

pointsuchas P, wl'?;ch _ ! A W\le amlbral& yorgim
38 situated x units of P ¥__J
length  perpendicu- g7 )

larly to the right {(ilx .

is positive) or left (if x is negative)40f*O Y, and y units of
length perpendicularly up. (if y is\positive) or down (if »
is negative} from OX. (Therglisino nced for the units of
length to be the same in the two directions.) The numbers
x and y are called the & eo-ordinates * "of the point P,
which can be referred m\as the point (¥, ¥}

In Tig. 8 are shdwn all the points represented by the
pairs of numbers listed in the above table. A mew aspect
of the matter issat-once revealed. All the points are seen
10 lie on a stgdight line. Moreover, it will be found that
any other rélated numbers belonging . to this set will give
risc to (%c;{“?ﬁé which also lie on this straight line. The

straight\line can therefore be regarded as a complete
represgitation of the [unction
A
QO y=3%+4

since all the points of the function will be found somewhere
on this line. Conversely, any point on the line satisfies
the functional relationship, and the value of y for any
given value of x could be read off the diagram or a suitable
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¥ (2.10) extension ol it

E I T T T For x = 1.7, for
H 11 il H 1 -

ol .| IS RN T4 Instance, the

. | - { —E M correspounding

] : .

value of y is scen

I
- to be g.1. .
- The idea “OL>
- functional Aerm
ok ('1"') X can “0“.'*13,3."' e-
L EENR scribed.\JThere
(2= [+ s ael* special
‘ié—rl L e ) ; megie about the
x JJumbers g and
Fig.8 \¢ in the above
W function, so 1t is
inherently probable, and is true j«jl\\fact, that any other
pair of numbers ¢ and & would give rise to a similar picture
for the function, that is, a strajgheline.  T'he function

4 i
i AT
7 o r.

1

(¥

» =+ b
is for this reason called & giréight-line function of x.
Obviously much mbre complicated numbers than this
could be built upseut of x and other constant mumbers.
Tor instance
£ ) L— 2
(NJ = 3%% + 45 + 5,
or, more ge;né*\ally,
w\,J ¥ =ax® + bx + ¢

The poits of any such function for given values of ¢ and &

. couldhybe similarly plotted on a diagram as in the above
g:r;zbler case. It would be found that the points do not

{lig on a straight line for this rather more claborate function.

3 Nevertheless, by plotting a sufficiently large number of
points close together, a dotted line will be produced,
through which a smooth curve can be drawn, and it will
be found that any other points of the function within the
range of the diagram will lie on or very close to this curve,
and the greater the number of points calculated and
plotted, the more nearly will any other points be found to
lie on the curve.
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48. THE LLXPONENTIAL FUuNCTION
The above is no more than a very briel introduction
{0 the idea of functions and their graphical representation.
From this point there will be considered a particular
function, namely

y=4a
where g is some constant number. I\
To fix ideas, let @ have some simple value, such as 2.
That is O\
¥ = 24, ‘\ o
N

The first thing to notice is that ¥ can have any positly&
or negative fractional or integral value, for the significancc)
of such a general index has heen determined. For i;ls“{méc,
ifx= 5 _ e db'.. i’b )
g% =t = '\/ 2 == 1-4I4s\ ‘ ‘I aulibrary.org.in
. N
- 5 ‘x;.

s = 1jrgrg = 7RO

Proceeding in this way, it will be pofsible fo draw up 2
table of related values of x and jwgovering any desired

L
I

I

and if’

=

range. For instance, R
— _ |_ [ — ’:':Z,....__ JE—
% . QO x Jo
e P O —T»s%\ —_ = =~ =R o= e =
— 3.0 %4 \/ : 1.0 2,00
. — 2.5 "..’lr'ﬂ' | g 283
— g Q:\lo’ 250 | 2.0 :I 400
ra &7 | — —_—
- N/ ! i
, NN s55 . 1 25 . 566
_“:’L—_ _| .—| - —— o
NS~ LD | 500 3.0 8.00
AN | ! — .

These and similar values can be plotted on a diagram
and 2 curve drawn. The curve is shown in Fig. 9. '
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From such a curve
g g any other correspond-
\ } ing pair of numbers
N / within the given range
L L R can bhec determincd
f fairly accurately [N\
about 1 per ccnt OF
4 so}. For mst'mce,‘f()r
the point on dig curve
for which y 5 1.8, xis
2 seen to he'e. 36, so that
1 - "4'\8\: 2‘- 26

il {(Khisullustrates a very

y=2X —

o
www dbraulibrafy drgih ¢ 0 0 4 seful application of
X —

’o

(€  graphical rcpre-
& 3 ; .
Fig. 9 ~\ fentation of functions.
X J

(Given that 4.8 = 2"’ ;

the determination of x by any method of direct calculation
would be a troublesopigsbusiness, and would puzzle most
people.) N

Theoretically e above curve could be extended
indefinitely he @)}d the limits shown in either direction,
and it woul {t)e found to be a smooth continuous curve.
This means that for any finitc valuc of y it will be possible
to find a valuc for x such that

¥/

x'\~"" y =2

,}herc 1s no special magic about the number 2 which has
een used for e in these calculations, and it mayv therefore
be said that in general, for any finite positive value of 4,
and any finite value of y, it will be possible to find a value
for x such that

¥y =a.
{Notice that @ must be positive. The reader is recom-

mended to try to tabulate a set of related values for yand ¥
similar to the above for y = (— 2)*.)
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39. LOGARITHMS
When x, », and a are so related that
¥y =4,
x is called the logarithm of » to the base 4, and is written
_ x = logyy.
I'he Lwo statements ¢ \:\
y — af. 4 .\ ~
and Lo
x = logay WG

therefore mean the same thing. The numbc;j"\o’oi"re-
sponding to a given logarithm is called the antilogarithm

ol the given logarithm.
the antilogarithm of .

cevemonial titles. Log and antilog are what onc actua
X }

says.)

Thus in the aboyeh'is called
(These, by th‘iﬂwﬁ?mﬁ?uﬁh‘fa{’#!org,jn
v

Having now shown that the logarijc}:mi of any number to

the basc @ exists, and having indi¢ated the possibility of
determining it by simple arithietic and drawing, it wilt
be assumed that there is available a set of tables or curves

recording the logarithm
the intervals betwecn w!

of.all humbers to the given base a,
Ske’ numbers being subdivided to

any desired degree, ofifineness. For reasons to be given

later, 10 is the basesc

hosen in practice, and tables of

logarithms and ahgilogarithms to the base 10 are easily
obtainable. WHat, now, is the usc of such tables ?
Suppose it{srequired to find the product of two numbers

¥, and y,... (Fhe logarith

ms of these numbers can be found

in the fablés. Call them x, and x,. Then
Pl s and #y

™3 F1L = al,
a.n(b N :
ou\\; 7 J = ars,
\ s that

P ]
Py Xy == 47X @F = T

This means that (x; + %,) is the logarithm of (¥1 X ¥a),
or that (y, X ¥,) is the antilogarithm of (x; + %,)- To

find the product {3, X ¥

5}, therefore, it is only necessary to

find the logarithms of y; and y,, add these together and find

7L



BASIC MATHEMATICS
the antilogarithm of this total. For instance

logye 3.412 = .53300
logy4 796 = 2.90091
. Sum  =3.43301
antilog, ¢ 3.43391 = 2715.9.
"T'herefore N\
3412 X 796 = 2715.8. A\

Thus multiplication is reduced to a simple OPCTELLIOI']. of
addition. In a similar manner, division can be simplified
to subtraction, for, by an obvious mOdlﬁCdtm of the
above preof it can be shown that

, loga( [y} = logayr — logadg: )
v SR S8 by 5412, R\
Iogy0 796 = 2.900ga >

logy, 3-412 = 333%

Difference == 2. 36791
antilogyq 2.36791 ——’233 2q.

Therelore R

795/3. 4«12 = 233.29.

’\.

Again, since “
fﬂga&n X o) = logayy + logays.
it follows that /

logalsy >< o X Fgeovonn Ya) =
S ioga¥y + logays + logsps...... loga yn,

and if N&

o
tk{s}é’comes

F1 =3 =Pz =Y, €tC. =3,

\ loga{y Xy X y...... n factors) = loga{y")
e = logay -+ logay + logey. ... .. 1 terms
~O =n X logey.
\ 4 Thus a number can be raised to any integral power DY

simple multiplication. For instance

logig 3.412 = .53300
logiq 3-412° = 5. X .53300 = 2.66500
aniilog,, 2.66500 = 462.98.
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Therefore .
3.412° = 462.38.
Furthermore, the general formula
Iogey® = n X loga).

proved above for an integral index, is true also for a
fractional index. Let # = p/g, where p and ¢ are integers.

Then, by the definition of a [ractional index, Y
(¥ = 5. o'
Therefore PN
loga( P08 = logay? = p X logay. /)
But '\\
loga{ P10 == g X loga(y%).
Therefore W\;f,\{\d,’brauljbrary.org.in

$
7

g X logaly71%) == p X logags\"
or O
logs{ 3"y = { p{(r}:}":,x logay.
In particular the nth root of @hy number can be cal-
cutated by logarithms, for 5%

loga A/ = log o \
= (1) X loguy, or {logey) -+ n.
Th T ¢
us, to find the, fifth root of 796,

o, 756 = 2.90091
..\::.’\15310 V796 = 2.900g1 <+ 5
SN = ,58018
,\\~" antilog,, .38018 = 3.8037.
Thexefore - - -
o) V796 = 3.8037.

g & Q."

YYerc an arithmetical process which 1s too complicated to
be admitted into ordinary textbooks is reduced to a simple
matter of division.

The full advantage of the logarithmic method of cal-
culation is seen in the determiination of a more or less
complicated number such as
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7 V1.519°
The determination of this by direct calculation would be a
weariness to the flesh, for which weariness the flesh would
probably rctaliate by slipping into error.  Logarithmicallyn
however, the calculation: 1s simplified to

logay = (5 x loga2.43) + loge191 \\\
+ Hogaza7 — ;2!0@:1.515_‘:,.’\:\
The whele of the foregoing propositions withiregard to
- the application of legarithms are indepeéiderit of the
particular base to which the logarithmas, “are referred.
The choice of the base to be used im‘\practice is merely
- of convenience. The hase ¢8yis actually used for
Www‘%ﬁ?{ﬁ%\ﬁ&?& éﬁs}cl)ln. Any whole, ritbr\ﬁber or decimal can
H 7 G P
be expressed as some number bqtﬁteen 1 and 10 muliiplied
by some power of 160. For indtance
143 = 1.43/10,2=.1.43 X 107,
3179.8 = 3.17g8°X 1000 = 3.1798 X 10%
and so on. ‘Fhus anyaiimber can be expressed in the form
A Y X T10%
where n is a pofitive or negative integer, and y is some
number or fraetion between 1 and 1o, Now
L MDg .y X 10% = fog, ¥ + legaT0"
N = log .y + n.
Thusall”that is needed in a table of logarithms to the
basésd are the logarithms of all numbers between 1 and 1o,
\Qr;".};ﬁividcd decimally to any desired degree (five figures
{are generaily quite sufficient for experimental work). Such
3 logarithms will all lie between o and 1, for example,
logy92 = .q0103.
The whole number to be placed in front of the decimal
point will be =#, determined as shown above. Thus
log6200 would be 2.30108, and log,,.002, that is, log,e2 X
1073, would be 3.30103. In practice the negative sign 3
put as a bar over the whole number, as in this example, to
show that it refers only to the whole number and not
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to the decimal part which follows. Itis more convenient to
keep the ‘decimal part positive. Thus 2.30103 is the
same us {—2-.30103), that is (—1.698g7), but the first
form is always used in computation.

Logarithms calculated to the base 10 are called
“ common logarithms ”, and the base is not expressed,
Thus il no other base is specified, it is always assumed to
e 1o.

There is another set of logarithms which is in occasional
use, These are calculated to the base 2.71828, for whlcl}\
apparently arbitrary number the symbol e or the Greck <
is always used. There iv method in this apparept,mad-
ness. So much so, in fact, that such logarithms are
called  natural logarithms **, though at firsssight nothing
could appear less natural. The naturg }qmbqggy%%l.g_in
written log,y. Actually the use of this/biher system ‘o
logarithms will not necessarily involyg-d\utew sct of tables,
for a logarithm to any one base caphbe’ readily converted
to the logarithm to some other b?sé in this way. Suppose

N
A\

logay =
fogn v, :—:n',
that 1y, . N Y
Suppose further that the logarithm of & to the base a is k,
that is, § '\‘"'} b = a*.
Then N\

\J y=b = (@) = akn,
and since algo\ J

:t\ ¥ = am,
0" m = kn,
50 th&“’
N logey = logab X logsy.
. i‘n ‘particular,
) log,y = lpg.10 X loga,

and since fog,10 is a constant number {2.3026) the con-
version reduces to

log,y == 2.3026 X I6g;0),
that is, Natural Log. -= Common Log. X 2.3026.
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If the foregoing description of logarithms and their
application 1s thoroughly understood, the reader should
have no difficulty in using this method of computation.
It dees not pretend to be a complete set of working in-
structions for the manipulation of log tables, but if the
theory is really appreciated, the reader should be able o
follow the detailed instructions which are generally Sne
cluded with any such tables (to guard against any wiis-
conception on this point, it should be made cleardhatthe
tabulated logarithms found in the usual published tables
have not actually been determined by the methddhdescribed
in this article, which would not be nearly acéugdte enoughj.

Finally, one practical peint. The loga)\ifhmic mecthod
can only be applied to anv expressign’ which consists

wwrw AhraEHRTeT B eTs B ucts, quotients, and powers. There-
fore, before setting out on any ‘aet'l}s “of caleulations it is
well to arrange them as complpt}ly as may be in a form
suitable for logarithmic comptition. An instance which
may frequently occur in\cOnnection with alternating
current problems is the diffcrence of two squares, that is,
a? — b2, where a andodNave certain specihed numerical
vatues, The form aX%- 52 is not suilable for the usc of
logarithms, but, asalready shown (see Examples I,

(B — bt = (e — b){a + b),
and the fofhon the right-hand side, consisting of the
product &fytwo factors, is better adapted for calculation.
For exdimiple,
O 874% — 27.8% == (874 — 27.8)(874 + 27.8)
O = 846.2 X go1.8.
.~'§0 general rules can be laid down, but the exercise of a

*

'f'. little ingenmity in this matter will ofien save a great deal
i ”\. of time and labour.

\‘;
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Examples IV

Show that

o

. Log 3 = 4771

log 1/3 = 1.5220,
log 81 = 1.9084,
log 9% = .5228,
log 3% = 14.313.

[¥=)

69918, .00073 7

Show that log (lvg 102} = 1 - log x.
Show that loge 1 = o for all finite values

What is log o *

@ Do

If not, why not?

o/

10,
show that fog y is a linear fupction of x.
) 3
N
<
N
6 J
O\
t“\:\s.}
&
»O
\i"\{w
N/
O
QN
NS

i. Given that fog 2 == 50103, show that log 5 is .69897.

. Show that 219 is a whole number of 31 figures.

7

Islog (a + ) =loga+logh? \Mww.db\m\

A
R
What is log (— 1) ? Is it equal toig (— 1) ?

%
L ¥

w‘s ’

If y = ka**, where g, b, and {::éke’ constant numbers,

77
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_What are the whole numbers in the logs of ar, 021, "/
\/

ibrary.org.in
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Chapter 5

EQUATIONS : COMPLEX NUMBERES

40, THE S0LUTION or EQUATIONS
N
HE solution of equations is a sort of mathc;r(a?i’c\al
detective work. One is given a sufficiency sfclues
and instructed to find the body, as it were,” More
prosajcally, equations are statements embodying informa-
tion about certain unknown numbers (usually Tepresenied
www kb rRelibaTinlere B or z) and various othgt\known numbers
(g, &, ¢, ete.}, and from this informati{:m it is required to
find what numbers are represented b{/the x, y, or z symbols.
This is more generally expressed agifinding the * values”
of the unknown numbers, The\use of the word “ value ™
in this connection is sanctigned” by general practice, but
one has only to speak of x being *‘ more valuable ” than y to
realise that this special application of the term * value ”
does violence to the orlinary meaning of the word, which
is rather a pity. Ipds, however, a convenient word to use
for the full algeBraic significance of a symbol, that is,
magnitude and sign.
The simplest® equations are those in which only one
unknown rdumber, x, has to be determined, and thesc will
first besconsidercd.

{74Y. EovaTioNs FOR OnE UNRNOwN NUMBER

\This subject is best approached as one might approach
_\some new and unexplored city. Having first seen it as
S whole from overlooking high ground, onc enters and gets

. to know its main thoroughfares and as many of its byways
\/ as one has occasion to use.
The meaning of the word * function ™ and of the
notation
¥ = flx)

was explained in the preceding section. It was shown
78
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that f{x) is a number, the magnitude and sign of which
depends in some specified manner on the value assigned
to x. For instance the form of the function might be
specificd as

¥y = flx} = 3x* - 5% -7

The value of y for some particular value of %, 8 for instance,
is written #(8}, so that for this value of »

3= f(8) = (3 X 8) + (5 x8) +7 =239
In general, il f{x} is specified as : QS
¥y == fix) == gx® 1+ by 4+ ¢, ’

the value of » corresponding to some particulaz pumerical

7
<

At & ;

N\

N

A\
AN

value of x, o for instance, would be WWW\.d‘bT‘aUIibl'ary.ot'g.in

¥ = flo} = aa? 4 ba'.{—.:h ’

It was further shown that in general tth:e relation between
y and x, where o\ o
could be exhibited graphically in the form of a picture
drawn in accordance with certain agreed rules, The rela-
tion is shown in the forfn of a line which may be a straight
line {sec Fig. 8), buff which will in general be 2 curved
line which may *dssume an infinite variety of shapes
according to the, type of the function (sec for instance
Fig.g). Q"

In mest asés the curve representing the function will
cut the a&dy of » (that is, the line OX in Fig. 8). Ifitisa
straigh{_line it will cut it in one point only, but ifitis a

L3

curved ‘line it may cut it in several places or perhaps
nogydt all. Thus for some assumed function y = F{x),
(the curve of which is as shown in Fig. 10, the axis of x is
\Crossed at three points, the x co-ordinates of these points
being, say, @, 8, and y. For all points on the x axis, the
yco-ordinate is zero, that is, y= 0. For all points at which

the curve y = f{x) cuts the x axis, the value of x is such that

y = flx) =o.
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Thus for the function ¥ == F(x) shown in Fig. 1o,
Fla) = F(8) = Fly) = o.
Any value of x for which

Slx) =0 _
is called @ “root™ of the equation jf{x) = o, so that g
B, and y are the reots of Fla)=o0. (One would like fo
know why this curious name is used. The name * soldtien ”
can also be used, and is preferable in some respectsty ) ’
Generally speaking, for any specified function. «

¥ = flx); O
the value of y corresponding to any desired value of
www diandibrdeterrpined by simple aritthtic. We are con-
cerned now with the reverse process,“that is, given some
particular value of y, that is, zero,fo'find the corresponding
y A\ value or valucs of x
™ This may be, and

3

4 usually * is, a rather
| more difficult matter.
¥ One perfectly general

method is obvious from
the above discussion,
and was illustrated in
the preceding section
for the case of the

X function
= 4%,
The method is to
Fig. [0 draw the curve of

\ ; the function and find
RN the points at which it cuts the » axis. This, however, is
m:“\. hkel'):r to be laborious. Moreover, the accuracy of the
\ 9 solution will depend on one’s skill in drawing, the sharpness
of one’s pencil, and various other non-mathematical
factors. Nevertheless, it is in many cases the only available
general method and one that is quite often used. Further
consideration will be given to it later on, but for the
present we shall be concerned with simpler and more
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accurate methods which can be applied to certain  com-
mon types of equation.

42. THE LINEAR EQUATION FOR Ong UNKNOWK
NUMBER

The simplest kind of function is that of which the
picturc is a straight line (see Fig. 8). All such functions
can, by appropriate manipulation, be reduced to the form

y=ax+b.

N

¢\

Corresponding to such functions is the linear cquatio.nlf

~

ax+b:0, ™™

the characteristic of which is that it contains only Zdown
pumbers and the first power of the unknown~"hmber.
As already explained, the solution of this c&%ation is the
v co-ordinate of the point in which the THE

y=ax T b NN
cuts the x axis. Except in the case {n» ‘which the line is
parallel to the x axis (a case of no practical importance] it
will always cut the x axis at oneypoint and one point only.
Thus there is always one solution to the equation. Once
the equation has been rechiced to the standard form its
solution is simple. Singé\the numbers ax - b and 0 are
equal, the addition of tﬁcs\numbcr _ b 1o each side will not
disturb the equalitysthat is,
Oax +b—b=0 — b,

or A 4 ax = — b.

Notice 1 t\n effcct the b is taken over to the other side
of the ‘equation, its sign being changed on the way. In
practicé one speaks of taking the number or sy.mbol over
to the other side. Actually the process consists of the
~addition of the corresponding number of symbol with
the sign reversed to each side of the equation. Since the
numbers ax and — b are equal, the division of each by
will leave the resulting numbers oT fractions equal, that is,

axja = — bla,

or x = — bfa. :
81
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Thus x = — &/a is the solution of the equation ax + & = o,
and the whole art of solving a simple linear equation
consists of reducing it to the standard form, afier which its
solution can be written down at once. Tor instance,

given
4(3x — 8) =7 + 4x, O
then 12x — 82 =% -+ 4%, @
and taking the 7 and 4x over to the left R\,
I2% — 4% —§2 — 7 =0, O
8x — 39 =o, N

and comparing this with “\ (4

ax '+' b = a,
worw G- SOHHEOR, i3 565R to be D
x = 30/8 = 447y
Taking a rather more difﬁcqlt'}xample,
_____ 2 M3
5% + g8% 8x + 2’
multiply cach equal fragtion by the number (5% + 7)
(8x 4 2). Then 39
2(5% + 7(8x +-2) _ 3(5¢ + 7)(8x + 2)
£5x}¢ 7) (Bx + 2} ’
and cancelliﬂ%\c’iﬁt the common factors in the numerator
and denominator of each fraction (sce Section z1),
27 2(8x+2) =3(55 + 7),
from_which point the solution proceeds exactly as in the
ﬁt:st{c. mple.
\Notice that, in genera], if

a 4

e N ) b
i\; ad = bs.
This is known as “ cross multiplication ™, but it really
consists of multiplying each equal fraction by the number &¢.
This is all that need be said about the simple linear
equation. No perfectly general rules can be laid down
for the reduction to the form
82 -
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ax + b =0, .
but a little common sense and ingenuity arc all that is
required.
43. TuE QuaDRATIC EQUATION

Next in order of complexity to the linear equation
comes the quadratic equation, in which the unknown A
quantity appears in the second power as well as the first,
The general type of this equation is O\’

axt - by 4+ ¢ =0, . O

X

corresponding to the function A\
y =ax? +bx ¢ ‘ 3
The reader is recommended to plot out roughly g.o!né’such
function, for cxample, v
y = ax? — 5x + 2. wx\.ﬂ(.:,lbraulibl'ary.org.in
It will be found that in every case the cu.iw? obtained will
]

resemble one or other of the two cury shown in Fig. 17.
Such curves are called parabolic and drghof great importance
in geometry and in applied sciences The equailon

ax® + bxeRe =0
is sometimes called parabolie also, but the other name Is
more generally used. 8
One general char:(")
acteristic of this sbrt,™”
of equation appears
at once fromp »the (4
picture of thétypical
parabolic/yfanction.
The cufve of such a
funci will either
cutthie x axis in two
m;pgii_ﬁts or not at all,
VThis means that a
quadratic equation
will either have two
real roots or no real
roots at all. Fig. 11
As in the general
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case, one method of solving such an equation would be to
plot the curve of the function

y=ax* 4+ bx +¢
and find where it cut the x axis, but fortunately there are
in this case simpler and more accurate methods available.
The easiest method is one for which the way was pred’\
pared in Sections 16 and 17. 'The multiplication of any
two numbers (x — o} and (x — f) gives D)

(x —a)fe —B) =2 — (a4 Pw +aB, O
Now suppose the numbers ¢ and B are such thal‘

a+ B8 = — bja #*
and af = c/a. , ~~\

wwwdlﬁﬁ‘hgﬂbrary.o{'g.i_u a){x — §) = a2 _}_ x“l‘

and multiplying each of these equa{ numbcu b} a gives
(s —a)x — f) :;;,x g
oL = ax? bx + .
If therefore we can find™ ‘wo numbers « and B such that
i w ,8 - — b;(t
and ; aﬁ == C/aa
then ~\\
a@{\"a}(x —B) =ax® + bx + ¢ =o.
Now there, arc two values of » for which a (x -—a)
{x — ,8) -:co The first is &, for, putting x = g,
Ca(s —a)(x — B) = als —a)la — )
~\. =aXox{e—g
"/ == 0,
}nd in a similar manner puttmg x = B will also make the

N number zero., Therefore « and g are the solutions or
..\1 ) rools of
\ ) ax® +— by +¢ = 0.

For example, consider
3% + 54x -+ g6 == 0.

Here — bjla= —18
and cfa == g0,
Also ) —|—{—16)—- 18

- 8
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and { —2) x { — 16} == 32,
so that n=— 2
and B = —16
will satisty the conditions
a—}—ﬁ:-—b}fﬂ,:-—IB
af = ¢ja = 32. ~
Thercfore the roots of this equation are — 2 and — 16, and \
gxt & 54 -+ o6 —= g(x? + 18x + 32) <
—gfx — (—2Mx ~ (=38} O
= g(x a¥{x + 16}, (".‘;:

This, however, is inspired guesswork, and i.nsH' ation. is
notoriously erratic and capricious. For everyday purposes
we need sormething more certain, a _mcth\q’d W Lla,_g}ggﬁgg org.in
neither as specdy nor as exhilarating asx}%& Y, y
can always be relied upon to get thefel However the
equation is solved, whether by fiwng) or _walkmg, Fhe
solution will be the same, so that thésoots of the equation
are e and S, where AN '
a LB =4S ba
and af% cfa.

Ifa and B cannot be guesded from these clues, is there any
other way ? Yes, therg 1s another way, depending on a
trick which s \\-'eﬂ\i\'f}'fth learning for other purposes also.
Since p.\

O atB-— bia

the Squar§K0fTHcse equal numbers will also be equal, thatis,
O % -+ B)F =a? + 20f + B2 = ba"

A]f‘?\’\ 4af = 4¢fa.

‘S@{c’e these pairs of numbers are equal, the differences

between the pairs will be equal, that 1s,

ot + 208 + Bt — 4af = b2a> — 4o

that is, a® - 20f + g == b2fa? — 4“‘;{12
= (b% — qa0)fa*.
But st — 0 £ =0 — A"
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Therefore (@ — B)2 = (b2 — 4ac)fa?,

and since these numbers are equal their square roots will
also be equal,

that 1s, o — B = /(b — gac)ja*
= 4/(b% — sac}/a. N
Now we know both the sum and differcnce of « ar@' 8,

and from these both can be determined, for if "3\7\‘
¢+ f=—bla .".\"/
and @~ 8 = 4/(b? — 4ac)/a, .~.< h

the addition of these pairs of equal nurp}bafa(s;"will give

@ LB £ (= B) =20 = — baNv/ (57— gac)ia

@
www.dbraulibrary org.in
e _ b Al

-l
Therefore AV
Wb 4 BT gac
a <852 2?;_._.. 4ac,
The subtraction of ghg%;ijhirs gives
@+ B~ @B = N
. @+ Bpa +B=2f~ —2 =V . L)
Therefore \\M o
Re! PR vy
W, T 2a

Thusthe roots of ax* + bx + ¢ = 0 are a and B, where
these nimbers have the values given above in terms of the
own numbers, a, b, and ¢.
AN Writing it out in full

;:y axﬁ—}-bx—{—cza(x——b—'_x/bz_qﬂg)
. Qa—__
(x— —b— ;é_?a_—__a&') -

For brevity, the two roots are usually combined into one
expression by writing
86
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g b VB — e

24 !

which means that o
%= (= b+ /b — qa)faa
and x=(—¥b— VB — 4ac)f2a

are the solutions. of the equation. The reader is recom-
mended to confirm the fact that the sum of these roots 18

— bja and their product ¢/a. L\
As an example, suppose N
6x2 + 5.4x — 19.32 = O, G\
that is, a =6, A
b = 5.4, (&
¢ = — 14.32, \
bt = 29.16, wwwdbBraulibrary.org.in
gac = — 463.68,40 yore

b2 — gac = 492,82, "
B gac = 22.20NY
Therefore the roots are N )
x = {— 5.4"—1’-5?22’.2)/12 = 1.4
and x = (— 5y 22.2)f12 = — 2.3
and it can be confirmedrhy actual multiplication that
622 + 5.4% 1952 = 6 (x — 1.4) (¥ T 2.3).

Tt was stated &love that in certain cases the equation
would have nonreal roots at all.  If the general solution
given aboveds really general, this fact should be implicit
init ; andgditis, for the roots contain the term 4/ b% — 4ac,
and thisill not always exist as a real number. Suppose
4 af}%e\.ﬁre of the same sign so that — 4ac is a negative
nuibér. Then, if 4ac is greater than & r}umenf‘,‘a'lly,
B3~ qac will be negative, and /5% — 4a¢ wﬂ_l.be im-
(“aginary * (see Section 36). Under this condition there
"“will be no real roots to the equation. For instance

2gx? —gx + 1 =0
has no real solutions, for
b — gac = 16 — 116 = — 100,
and VBT = gac = \/_—-_1'0_0 =104/ - 1L
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Subject to finding some interpretation for 4/ ;
the roots can be left in the form (4 4+ 10 4/ 71)/58,
thatis, (2/29) + (5 4/— 1f29) and (2/29) — (5 +/— 1/29).
It should be noted and confirmed by actual multiplication
and addition that though these are * complex numbers *,,
that is, numbers consisting of two parts, one of whiclrds
imaginary, their product and sum are real, being respects
ively 1f2g and 4/2q. LW

For the solution of a quadratic equation, ilepefore,
it is only necessary to reduce it to the form \

ax2+bx~{—a‘:0, ,:".
and the roots ¢an then be found either by{gﬁx@sswork or by
means of the formula: The roots of’he equation are

7%
LS D

www dibesulbathensg.if— & 4- 4/pE 4ac){2dy" {Whether these

/7N

O

numbers are real or complex or imaginary, they are still
called the roots of the equation

Asin the case of the linear cqitation, however, some little
ingenuity may be required for.'the reduction of any given
equation to the standard forin, but this is only a matter of
practice and experiencesyTo take an example, suppose

30+ 10) = 1/(1 + x),
Multiplying each €gual number by (1 + ¥} gives
3 )1 + 1) = (1 + 1)t + 7),
that is, XN 8(&® 4 11x +10) =1,
or gx* -+ 33x 1+ 29 = 0.
Again, Q" . :
A\ 7(x+x) +3(1 . x) = —16.

ms will give

{ﬁ}’t"i’plying cach equal number by x and rearranging the
s

7% 4+ 108 4+ 10 == o,

(y" and a practised eye would see the roots of this to be -— 5,7

and -- 2.

44. EQuaTiONs REDUCIBLE TO (JUADRATICS

Before leaving the subject of quadratic equations it
will be well to point out that an equation that looks
forbidding and unapproachable at first sight may prove on
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closer inspection to be quadratic, not in x, but in some
simple function of . An equation
ayt by =0
can be solved for y, whatever the nature of y may be. If
the roots are e and £ then
p=a,0ry —a =0

and y =B ory—f=0
will satisfy the original equation. £

If, now, ¥ 15 some function of x, say Jf{x), then thcsaz N\ K

become \
flx) —a=0 N

L W
A — B =0, A
two further equations in x, which ma){u@&.ﬂ!@ﬁ%ﬁﬂﬂﬂrﬁ‘g,org,jn
solvable, but which will in any case be morénanagea
than the original equation in x. Take @"very simple
example 5 - - O

and

axt + bx? ¢ :,0;-:.’ ’
This can be written o0
a()? + b(e%) K% = o,
or, writing y [or the ﬁmctionfﬁg '
apt H 8+ ¢ =0
If the roots of this eq};a‘th)n are o and B, then the original
equation is satisﬁed\by""

y—a=0
and <" y—F=0
that is, ,\ 2 —a =20

and & x2 — g =o.
The i?(‘}'()‘i:g of the first are
Q) (x — v/a)(x + va) =

&8 of the second _

\/ (x — VB +vB =0 -
s0 that the four roots ¥ = £ +/a and £ V8 will satisty
the original equation. Notice -that the linear egunation
containing the first power of ¥ was found to have one root.
The quadratic, confaining the second power of x, was four;d

9
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o have two roots, The above cquation, containing the
fourth power, has four roots. This suggests, but does not
of course prove, that an equation containing the nth
power of x will have n roots. This is so in [act and will be
proved later,

The recognition of the quadratic form will not be alwaysg™\
so simple as in the above example. Take, for instance,,

I I 2N
x2 | ¥+ =4. o\
- + PE + t ¥ 4 :\."}\
‘This can be written P
< D
12 *i"ﬁ‘.‘—-lz -+ x—}—l — 6 Zo.
x x o\
. N\
Now \ 4

www.dbraulibrary.orgin

N
I "
x4+ + 2) = (%’%*\}) ’
X A \\. X
so that the equation is really N

! E : R :"i 6 =
(x x) + (x‘+ x) —6 =o,

and, writing y for {x ——“1)‘::9; this becomes
m "j’g"l"}'_G:Os
of which the solutions can be seen to be

s \J ¥ =4 3 =20
N’ .
and \\
O ¥ —2 =o0,
A O
that 15,. <
£ 4 S I
2.3 x+=)43—o
0 M ( x)
v
R\ 1
NN ¥ +-]—2=0
' N *

\\ ‘The multiplication of cach side of each equation by ¥
will convert thése into two simple quadratics in x which
can then be solved for x in the ordinary manner. Here
again it is the insight born of practice and experience that
sees the essential simplicity at the heart of the apparent
complexity,

qo
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Examples V
1. Solve the equations i—
fa) 3lx —27) =2(x +4) +7(x— 9
6 —2 - — 5
x4+ 3 7(x — 1) +2{x +3) +1
(¢) ax +bh=ex+4d
m __on
ax b x4
2. Find where the line
_ y=3%t4
cuts the axis of x.
Find the co-ordinates of the points on

which y= —5andy =4

3. Solve by inspection the equations ';f('
(@) 2 — 58 + 6 =0, ‘.",;
s b6=0, A

{¢) a2 —x — 6 =0,
(d) «® +-x — 6 =o0. :z

4. Solve the equatio EN—
O
— 4\‘3«( )
I
b) (x 3‘)’ + x T Q) (Li'_—:xj’
() xz\— ogx + at — bt =
Wi E —be—|—bz—~az—0
\Solve the equations :—

(@) (x® — 4){(x? —5x +4) =0,

(
@ T (5 - x — By x — s — D) — ) = O
() (ax® + bx - c)(de? + ex + f) =0

NS

~

o

s,"
b 2

ﬂ(f,\\mc lor

Ww aulibrary.org.in
» yore

gr
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45. THE GENERAL EQUATION OF THE #TH DEGRIEE

Having disposed of the linear equation and the quadratic
equation, the next in order is the cubic, which contains up
to the third power of x or, another way of saying thc same

thing, is of the third degree in ». The typical equation is

ax® + bx® +ox - d =0, R

Then comes the quartic, that is, \ \)

axt bt doex? +dy — e =0, ‘
and so on indefinitely. "'f »

Unfortunately, however, there are no geheral sohutions

for these equations. This is specially dufortunate from

ww i HETHHREABF QHEW of electrical theorgyhTor the analysis

of the behaviour of two coupled circditsinvolves a quartic,
or, as it is sometimes called, 2 hisquadratic equation, and
for this reason practically allMewthooks fight shy of it
confining the full discussion to\the’simpler case of resistance-
less circuits, when the bi-qudratic becomes a quadratic
n x2, AN

Although there arc¢pdas stated, no perfectly general
solutions Tor equatiens of highcr degree than the second,
such cases are by ho means hopeless. Certain forms of
higher degreg equation can be solved (two bi-guadratics
were solved ifs the preceding paragraph). Also there are
certain gereral considerations relating to equations of any
degree wHich will sometimes point the way to a solution,
and whieh are intrinsically interesting and useful apart
fromi (this application. We will therefore discuss briefly
f{\é:general equation of the nth degree, typified by

Waxt + bxtt o oexv? e detd - exY, cte, ele, -k == 0

£\
RS

\ -
3

\ 3

where the coefficients a, b, ¢, etc., can have any sign and
any numerical value. First let us see how such a number
as that on the left-hand side of this equation can be built
up. By multiplying together » simple numbers of the
form x —a, x — B, * — y, etc., it can be shown that

(x —a){x — B)(x — y),etc. . . . nfactors ,
92 -
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—'x}i_(a+;8+7+ L. ')xﬂ—l
4 {af + By + 98 . . At
— (aBy +ByS + . . ) x, et

(— " (afyd . . )

the coefficient of x»* consisting of minus the sum of all the

o, 8 numbers, that of ¥2 being plus the sum of all the
products two at a time of the a, § numbers, and so on. A
The cocfficient of x* (that is, the constant tecm not con- L™
taining x) will be the sur of all the productszat a time, that,_

is, the product of all the ¢, 8 numbers, and its sign wiilkbf:

plus if 7 is even and minus if 7 is odd, which fact #s\eon-
veniently expressed by the factor (— 1) The\ reader

can casily confirm this general formula by multiplying
two, then three, then four, simple fm@%ﬁ@&ﬁihﬁ*aﬂ%rg.m
arranging the product in cach case in theZabove manncr.

For shortness, put \ N

(e +84+»+5+. . :-)t‘;z‘—b.za:
(2B + By +v3 + . W\ =da

ete., ete., O
WBys o ) = (Y .
Then N\
(x —a)(x — B(n—y)etc. . . .7 [actors
= x* + (blayt + (cfa) % ete. . kfa,

and multiplying ca%@\c;f these equal numbers by 2 will give
ax LD =B —v) . - . n factors
= g byrl - oxvt Hdxv S et L k.
The aboy{}bdmp]icatcd number of the nth degree in x can

therefoRé” e expressed as the product of 1 simple numbers
of th€fotm x — o, and the general equation can be written
) \'j N ax® + byn=t 4 can—? - dnTE et L - k
\¥/ :a(xma)(x—-ﬁ)(x—y) . . . nfactors = 0.

As already explained, the equation will be satisfied when
any of the individual factors are zero, that is, when x = @, B,
v, etc. The numbers o, f, y, €iC., ar¢ therefore the roots
of the equation. Thus to solve the general gquation of the
nth degree, it is only nccessary to break it up into its n
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simple factors ; but this is easier said than dene. Tn fact,
generally speaking, it cannot be done. The only general
method of sclution is the graphical one already described,
and even that is not much use from a theoretical point of
view, Suppose x, for Instance, represents the rcsonant
frequencies of some coupled circuits, the coeflicients of thes
equation heing the electrical constants of the circuits
What one usually wants to know in such a casc is the{Way
the roots depend on the coefficients, that is, one mwants x
explicitly in terms of a, b, ¢, etc., and the graphicai wicthod
will only give the solutions for particular nunietical cases
in a form in which the individual coeflicignfy have quite
lost their identity. N
HOY_/ ver, certain general conclusions)\of some practical
v GO LB @ Blfawn from the ahove discussion. The
most important of these is that the general cquation of the
nth degree has n roots. Actua:f‘;} the above discussion
only shows that an equation with*a roots will be of the nth
degree, but the converse is @lso true, though a rigid proof
is rather beyond the scopgtof the present work. The roots
will not nccessarily be~all different. For instance, the
roots of N\

xE'—4x+4=o

P\ s
arc 2, 2, sinée)x? —4x + 4 = (x —2)(x —2). This
shows that t}){t\ curve y = x¥% — 4% -+ 4 cuts the x axis in
two coincident points. If the left-hand curve in Fig. 1
is movedtip in the positive direction of the y axis the
poinjﬁi'n which it cuts the x axis will obviously come closer
am{{: oser together and will eventually coincide. In such

case the curve is said to touch the line tangentially.
L \'Again, the roots will not necessarily be all real. " If the
~0% upward movemernit of the curve referred io above is con-
~L ) inucd beyond the position in which it just touches the %
\ ) axis, the curve will not cut the x axis at all. The corre-
sponding quadratic equation can siilt be solved, however,
but it will be found that &2 — gac is now negative, so that
+/b% — gqc is imaginary, and the roots will be of the
form p 4+ ¢4/ =1, ¢ —gy/ =1, as already explained.
The curve represented by the general function may have
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several such bends, and any of these which do not come
down beclow the x axis will give rise to similar pairs of
complex roots of the form p 4- ¢ v/ ~1. It can be proved
that any complex roots of the general equation _will
necessarily occur in such pairs, so that if p +g+/— 113
known to be a root, then p — g 4/— 1 must also be a root.
The relationships between the roots and the coefficients,
that is, the sum of the roots equals — b/, etc., etc.,, may Ay
- E . £\
sometimes be of practical value even though the roots K™
cannot be determined, and should therefore be noted. \
The cxpression of the general function as the produgtof
the root factors shows that if one root of an equatiombart
be found in some way, for example, by ‘ guesstipation ™,
or by plotting the function over a likely rangg\of’values,
then the degree of the equation can be bw@dhhxxnﬂﬁql}y_org_m
dividing by the appropriate factor (the methed of division
is illustrated on page g6). For instancestake
¥ 4 632 — gx — 4 £)0.
Here the sum of the coefficients is<géro, which means that
¥ =1 satisfies the equation (for the result of putting
% = 1 is obviously the sum of the coefficients). 'This means
that (x — 1) is a factor of the number on the lefi-hand
side, and by division * itwill be found that
¥ 4 6x2 — gpéng = (x — 1)(x* + 7% +4) =0,
so that the roots Yef the equation are I, together with the
roots of the quadratic
’:‘.\ 24 yx 44 =0
which cap\’b} found as described above. o
An interesting special case of the general equation is
O\ n _
R -1 =0,
orals
N\
=1,

2 =%/T.
Since this equation must have n roots, we must conclude
that there are n nth roots of unity. And so there are.

% See special note on * Division ini Algebra ' at end of this section, on page 9.
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For instance, consider
x—1 =o.
Remembering the result already established for the factors
of 2> — b2, that is,
a? — b2 = (a — b){a + b),
the cquation can be broken up into factors thus i —
B == (e 1) (at ) O
= (x —1j{x -+ 1){x — 4/ —D(x +v--@h=o,

so that the four fourth roots of unity are + L dnth= +/ —L.
The significance of this will be made cleafa¥hen we come
to the interpretation of complex numbersy

N

www.dbraglibEpr O more might be sajd\about the general

equation of the nth degree, but i%llas already‘_takcn as
much space as can be allowed'@dr it. The important
things to remember are that3Chas » roots, that any com-
plex roots will occur in paifs differing only in the sign of
the imaginary part, and that each root gives a factor of the
equation., o\

* [Division in Algebrd>The division of one more or less
complex group of symbols by another in algcbra 1s carried
out In very mueh ‘the same way as the ordinary process 0
long divisionsi arithmetic. 1t can be illustrated by the
case which arises in the text.

AN 1) X% 6k g — g (¥% R 4 4
o N/ L R

$ 3
NS
O 752 — 3%
\L 7 — 7%
4% —4
S 4x -

If it is remembered that any ordinary number ol several
digits is really the sum of various multiples of powers ©
ten, for example,

4352 = (4 X 10%) + (3 X 10%) + (5 X 10) + 2
g
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which can b:c compared with
4x% + 3¢% + 5% + 2,

the identity of the above algebraic division with arith-
metical division will be apparent.]

40. SIMUrTANEOUS EQUATIONS FOR Two UNKNOWN
NUMBERS
It has lieen shown that, starting with some number
representect by the letter x, some other number can be
built up out of x and various other constant numbers,
represented by a, 8, ¢, etc., the more or less complicated

number which results being called a function of x. Similaxly’

one could start with two numbers represented By-the
letters x and » and build up some other number; efimore or
less complicated structure, the magnitudé “6f Slict ksard
depend on the magnitudes and signs assiged™o ¥ and y.
Such a number could then be described.as*a function of
x and y. Using a similar notation, \any such number
could be written F{x, ). In a given-Case, for instance,
the function might be defined as &3* '
Fln, p) = axt + by £OF + a5 + o TS,

which is the most gcneml form for a function of the sccopd
degree in x and y (second degree because 1o term contains
more than two XS 1{1‘ s multiplied together). In the

above case, x andy>can be regarded as independent

variables, which{ between them, fix the value of the

function. Suppose, however, that some particular value
is assignedt tc{ the function, zere, for instance, 30 that
Nt by + ot T o+ =0
then $.and y are no longer independent variables, for if
any.given value is assigned to either, the other mmust have
”\5i1§§1 % value or values that the sum of all the terms 15 Zero.
\ Obviously, in the above case, if some given value 1s assigned
o %, & for instance, wWe have

Gkt 4 bhy + 0 Lk + o+ =0

which is a guadratic equation for y, so that for any given
97
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value of x there will in general be two values of y which will
satisfy the original definition. Thus, whatever the form
of the function F(x, »), the equation

Flx,3) = o

can be regarded as defining a relationship between x and y,
Just as the equation y == f{(x) defines more explicitly @n
relationship between x and 3. By means of the graphical
method already described the relationship heiween the
numbers x and y defined by F(x, ) = o could 158 repre-
sented by means of a line of more or less complicated shape.
For instance, the general expression of the sécond degree
written out above, if plotted for any paticular set of
values for the coefficients, will always give ayeurve helonging

www.di aﬂﬂ&%&'i‘}ﬁ*é.}lﬁee kinds of curve thatdcan he obtained by
o a

h
2

..\:.

S

TN,

3

Intérsectl cone and a plane. ,3uth curves arc called
conic sections, The parabola alteady referred to is one
kind of conic section. Q)

Two such functions of any:éhéracter,

Fa3) = o,

G,‘(x) }’) =0,
plotted on the same diggram would give two lines or curves
which would in geperal intersect one another at various
points, as shownj for instance, on Fig. 12. The numbers
x and y defined\by any such point of intersection, since they
satisfy bothlih\: functional relationships, are described as
Oy solutions of the simul-

) < taneous cquations,
00\'... 4 - F(x}}') £ D;
S f Foen=g Glx, 3) = o.
N : y More generally, any

corresponding  values
of x and y, whether

V Gx)=° real or Complex of
/ fo]

7 ¥ imaginary, which
satisfy hoth the func-
x—= tional relationships,
are called solutions 0
the simultaneous

Fig. 12

g8



EQUATIONS. GOMPLEX NUMBERS

equations. Thus a general method for determining the real

solutions of such simultaneous equations would be the

plotting of both the curves 1o find the point or peints of

intersection, though any such graphical method would be

very laborious in most cases, and would have the dis-

advantages of lack of generality and restricted accuracy.

However, the above discussion of the graphical point of

view brings out one very important point. It was found

that for one unknown quantity one equation is sufficient. (),

Now it appears that if two unknown quantities have to

be determined two equations are required. - This suggests,

—though, of course, it does not actually prove—that for e,

determination of any given number of unknown quantitiesNan

equal number of independent equations are required. This is 50

in fact, though a perfectly general proofvis, Hegeutlbfhey org.in

scope of this work. N\
Out of the infinite variety of possible fotrs” of simul-

tancous equations for two unknown numjpers, a few of the

most gencrally useful types will now bg ‘¢onsidered.

%

W
47, SIMULTANEOUS EQUATIONS oj@' THE I'IRST DRGREE
FoR Two UnKNOWNS

This is the simplest case, beth equations being rectilinear.
As it introduces ideas oféwide general utility it will be
considered in the genexal form, though literal (that is,
letter) expressions (tend* to spread themselves out rather
and look more fear§Ome than they are in fact, The general
form will be &

‘ ,\“ ax + by =0,
;”\“’ dx + cy :f:

These Jines, being co-planar (that is, in one plane), will
necesarily interscct at one point only. Even if they are
patallel ?° Yes, for parallel lines intersect at infinity, which
is bnly another way of saying that there is no sudden and
catastrophic difference between lines which are very
nearly parallel and lines which are quite parallel.

The important thing to realise about simultaneous
equations is that although in general the #’s and y’s of the
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two equations are quite different and have nothing to do
with each other, the x’s and »’s corresponding ic & simul-
taneons solution, that is, to a point of intersection, are of
necessity the same for both equations, and can therefore be
combined together without making any distinction between
them, A

The first thing to do is to make one of the unknowns
y for instance, appear in the same way in each equation.
If the first equation is multiplied by the coefficlerit/of
in the second, and vice versa, this result is obfdimed right
away, for we have N

eax + eby = ec, K7,

bdx + bey = bf. o\

<

www.dbBantebithe, Wsgand s in each equationdre the same as far

as the point of intersection is con d, the equations can
be subtracted from each other, $ing
eax + eby — bdin3 bey = ec — bf.

Remember that this derivedMequation is only true for %, ¥
numbers which satisfy belf*the original equations.

From this cquatiqn’{éé — bd) x = ec — ¥&f,

N =Y

A " ea — bd
Now the oin:"t}lzwing this x co-ordinate lies on both lines.
The corrcERbriding y co-ordinate can therefore be found by

putting¢this value for x in either of the original equations.
Sincc,;fmm the first,

a ¢
2 y=—prty
\then for the particular value of x above,

_afe—1¥f €
J="% (a'; '—'bd) T

This expression for y can be simplified as already shown in
connection with the manipulation of fractions, and W
give the result

so that

_af —ed
V= e b

Alternatively, of course, the solution for y could be found
100
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by the same process as that used for the determination of x,
and in some cases this might be preferable.

To take a simple numerical example of the general
method,

2x + 39y = 4.
X 7%+ 8y= G
theretore 16x + 249 = 32,
21x% -+ 249 = 27, N
and subtracting the second from the first A o
oA
— 5% =5, R\
and ¥ = —I. " QO
Putting this vatue for x in the first cquation gives N
— 243y =4 O
that is, 39 = 6, www.d]:rrg)}library,org,jn
therelore ¥ =2 A

1t will be found that these valucs for x, ;ﬁ\i& ¥ will satisfy
the second equation, which checks the hecuracy of the
solution. <\

L R Y
48, THE SpECLal CASE OB\ParaLLeL LINus:
THE MEANING QR INFINITY "
Suppose coelficients of ihe ‘general equations are such

that N\
Cald = e,
that is, O
N m—bd=o.
Then the solution for & becomes
Ko
& = g —bd o

i”\.‘.

Now v%x’i’lavc already encountered the group efo, and
decided that it was something to which the ordinary laws
ofsmathematics could not be applied without disastrous
~yesults. However, some rather more definite idcas on the
subject must be introduced at this point, or the above
equations will be left without a reasonable solution.
Instcad of jumping right over the precipice let us walk
slowly up to the edge and look over, a very sensible
101
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proceeding which is frequently adopted in mathematics
when there seems to be trouble ahead.  Consider the group
alh, where £ is a number which can be made smaller and
smaller indefinitely.  If

k= 1f1,000, alh = 1,000a,

if h = 1f10,000, afh == 10,0004,

il h = 1]/100,000, a/h = 100,0004. .
As A is made numerically smaller and smaller, a/k becomes
numerically larger and larger. By making £ smfﬁtier'ltly
small, gfk can be made larger than any number we can
name, however large it may be. This is exprssad mathe-
matically by saving that the limit of 2/, hén & tends to
zero, is infinity—not a very consistent form of expression

www . dbraslibpar heEdge infinity means withousNmit, greater than

N

any Hmited number. In symbols theddea is wrilten
it. ajk —'bx&f
Roro AN
The important thing to remember is that co is not 2
number, and almost anydﬂfﬁg is rather more than likely to
happen if it 1s treated asiadnumber.
In the above case therefore, the solution for x is infinity.
For instance, if ’
AN 3t 4y =35
and \“ 21x + 28y = 4,
the solutign for x is
O % = (140 - 18)/(84 — By) =
and o5, 3 = (105 — 12)/(84 — 84) — 0.
Ifthese lines are actually plotted on a cartesian diagramm,
'\{\"will be found that they are parallel. This is what 8

Mmeant by saying that parallel lines meet and intersect at

infinity.
44. AN ELECTRICAL ExXAMPLE
Now, in case the more experimentally minded reader 15
beginning to lose intercst in #’s and y’s and the like, 3t
will be well to apply the above to the solution of a simple
D.C. circuit problem on the basis of Kirchhoff’s Laws.
For the circuit shown in Fig. 13 the summation of the
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potential differences will give

(i — iy) By =,

and (i — 4} Ry + Ryiy =0,
that is,
iy = 1y = &[R,,
and Ryi, — (R + Ry} iy = 0.
The solution for 7, is A o
A\
; :_ﬂ{_lﬁ“ Ry) (R, 2N\ N
V(R + Ry — &Y D
which can be rearranged to give N
= (-}_ + R )e 6_ A, ~~'\'\’ R,
R, R, O+ ),
1 2 e | wwyhddrjulibgary org.in
s \ -
that is, i = ;E’ é xL'\\ L2
whe 1 1, 1 X \ Fig. 13
vhere R, — AV
: R R, "R\

The solution of the simu.ltam:()}fs:chuations given above
is therefore one way, though et the shoriest, of arriving
at the well known expression for the resistance of two

resistors in parallel. A

30, SIMULTANJ::oqs“E}gUATmNs ror Two UNKENOWNS.

SMEQUATIO

N LINEAR

This comes géxt in order of complexity to the case of
two linear egations. The method of solution in this case
is fairly obgggu’s and will be best described by means of a
practicale mple.

Suppose

W

NY 4 t2y=5

an(b\
NN

3af — 41y — 43° =

~Sakc given as the two equations. The first js a straight

) line and the second a conic.

In general a straight line

will cut 2 conic in two points, but of course these points
may be imaginary and in some cases either or both may
be at infinity. That, however, is by the way, and only
indicates that there will be two solutions, that is, two pairs
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of values of x and of 3, for the above equations, From the

first equation we can find the value of y in terms of x, that is,
2 =(5 — 49)/2,

and sincc at any points ol intersection the x’s and y's will

be the same in the two equalions, this value ol y can be

substituted in the second equation, that is, 7\
- 2
gt o (52 4%) 405 . Y, O
which can be simplified to oY’
s —br 45 =0, o\
that is, —5flx —5) (x — 1) =0,/ °
whence X = 1 Or 5. .“’.,\\.

.dbFaulibriry longdn equation, if v

N x =1, y=[5— (4 X\Ji/2 =3,
and if ’\ #
x=35 y=1[5- (82805} = — 7%
The solutions arc therefore , \J
¥=1) JJW =5
Y=Y v = 78
In general terms, the value of y in terms of x, as deter-
mined from the lingar equation, is substituted in the other
equation, whichst‘hen hecomes an equation in one unkI}OWn
only, and if this latter equation can be solved, the stmul-
taneous sqlh{;\bns are easily obtained as shown.

51, 5~r~;(;m‘;:rANEUUS EouaTtions rowr Two UXKNOWNS.
O\ Bors oF SscoxNn DEGREE
'“\I{}\'i:h_is case each equation will in gencral represent 2
§mc. Two conics will intersect in four points, so that
{ Mour solutions will have to be obtained, and in the pt‘.I‘fBCFlY
V" general case the determination of the solutions will Tequie
the solving of a fourth-power equation, which cannet
always be done. There are, however, two special cases
in which the solution presents no difficulty, and these Wl_l
now he described very briefly, If one of the eguations 18
homogencous of the second degree, that is, contains only
terms of the second degrec (a2, ¥%, or xy), for example—
y¥ — Tlay + 24x° =0,
104
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then dividing this equation by 22 will give
(fx)? — 11 (fx) +24 =0,

which reduces it to a quadratic in pfx. This can be
solved either by inspection or by the formula. In the
given case we have by inspection
{(pjx) — 3H0lx) —8; =0,

s0 that ¥ = gx, ory = Bz, )
‘These values for y substituted in the other equation will \J)
reduce it to a simple quadratic in x which can be solved
in the ordinary way. A

Again, if terms of the first degrec are absent {rom Both
equations, as in RS p

ax? + 8xp F 49 =2, b

and sxt 2xy 4232 =7, \
then out ol these two cquations a homogéneous equation
can be constructed.  Multiplying theirst by the constant
term of the second, and the sccond\Dy the constant term
of the first, and then subtracting,\

bBraulibrar y.org.in

\

1457 L 21xp E28y? = 14,
and rox? 4 4k 477 =14,
so that, 427 4 179 + 243 =,

2

and from this point tlie Solution proceeds exactly as in the
previcus case. (\J

The subject ef Sittultaneous equations for two unknowns
is obviously cdpable of almost indefinite cxpansion, but
most of thesdages which permit of simple solution belong to
one or pfhigr of the types considered above. A little
practice.afid experience will soon enable one to judge
whethés/any given equations arc solvable or not. As an
instance, an unsolvable pair is included in the examples
aiven below.
{.) Equations having more than two unknown numbers
) are very frequently met with ‘in electrical theory, such
equations Being obtained from the application of Kirchhoff’s
Laws to more or less complicated current networks, Some
brief account of the way of dealing with such cquations
will therefore be given in the next section.
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Loxamples VI

1. Solve % — 4% — 3% — 54 == 0O,
given that — 2 is one solution.

P
2. Solve 2 — 36x% - 1934% -~ 410x 4 600 = 0, O
given that 1 — 2 4/ — 1 is one solution. {\

5. If a, b, and ¢ are the roots ol x® -+ gx? 4 r %b find
the value of {1/a) + (1fb) + {1/e). <::;}
o)

}
4. Solve the equations

(@) 1ox +3/3 =37, QA
N

V4

3 = .5 $ 4
) 3x - 2§ 2x—]—?;3‘§\2

\V
5. Solve ‘\o’;‘;'
(@ %ty =355
S A 4
) 3 Ky — 7 =0,
x{«; ¥t 4 ox =12,
)

,:s) x2 4 3% +3 =5,
&
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32, SIMULTANEOUS HQUATIONS FOR SEVIRAL
UNKNOWN NUMBERS

1t has already been indicated that if scveral unknown
numbers have to be determined an equal number of
separate and independent equations will be required. A
perfectly general discussion of m equations of the nth degree
would take the writer out of his depths and bore the reader
intolerably, besides wasting his time. The solution of
several first degree equations for an equal number of (8.
unknowns is, however, quite another matter, for it sy
comparatively simple, and of great practical importarice,
in  applied electricity. As already mentioned,, Ssugh
equations arise from the application of Kirchhof'gIaws to
direct or alternating current networks, and areherciore of
particular interest to radio students. www.dbratlibrary.org.in

To save time, space, and trouble, th \representative
example of three equations for thrcc“%rﬂmowns will be
considered. It will be found that the\macthod is the same as
that which has been applicd to the sokupion of two equations
for two unknowns. The method\is, in fact, capable of
indefinite extension. Take as ¢heé’ cquations

x4 2y 43¢ = 4, . oo
2x + 33+ 42 = 5 e 2
gx KO+ 72 =0 . .- (3}
Multiply (1) by 4 and){2) by 3 in order to make the co-
eflicients of z 1,hcim e in cach, so that
O+ tzz=16 .. . @
N bx gyt 122=15 . .. (5}
and by sybtracting {4) from (5),
(\V 2x +y = —1. (6)

Anothé"equation in % and y can be obtained from equations

(2pand (g) in a similar manner, or from (1} and (g} if this

. (8ypreferred for any reason. Multiplying (2) by 7 and (3)

1qx + 21y + 282 =35 .. - (7

12x + 24y -+ 28z = 24 .. (8)
and subtracting {8) from (7),

ax — 3y = 11, .. .- .. {(a)
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Also, from (6},

2x -y =< - 1, .- o .6
In this case it happens that the coefficients of x arc the same
in these two equations. If they were not, the same opera-
tion would induce them to be so.  As it 1s, we can simply
subtract (6} from (g}, giving

— 4y =12, . .. R

or ryr=—95 .. .. \61\1)
Substituting this value for » in (6), N\

2% -3 = — I, .. AT (re)

or X1, . RO IEERL)

Now, putting s = 1 and y == — 31in {1}, m’\"\.' o

www_dbraulibl'ary.orgl.ir-\" 6+3c=4 NN\ - A14)

herctore =23, (15)

and, rounding them up, we hani\\c“s
solutions of the three equations ’~~x\ e

x ::[s, N

the simmulianeons

=
«)

5= 3,

It may be pointed quiss a matter of interest that the
cartesian diagram alt€ady considered in its simplest form
with the two x apd y axes at right angles to each other
can be completed by the addition of a third or z axis at
right angles, K}.,L‘)oth, Eke the adjacent edges of a cube.
Three co-orditates, x, ¥, and z will then define a point it
space, just &s two co-ordinates define a point in a plane
in thessimipler plane diagram. Further, just as

x'\w ax + b}l =
defines a line in the %, ¥ plane, so
.s’\w ﬂx“|‘f’.3’+f3€=d

) ‘defines a planc in spacc. The solution obtained above
m:"\;' for the three plane cquations gives the co-ordinates of 2
\ ) point common to the three planes, that is, the point of intet-
section of the three planes.  If we could visualisc a fourth
dimension, the first degrec equation in four unknowns
could bc similarly interpreted, but unfortunately we
cannot, so there we have to leave the geometrical aspect

of the matter,
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“That, however, would not prevent us from solving four
such cquations for four unknowns. From any two, one
of the unknowns can be eliminated. From three different
pairs, the same unknown can be climinated three times,
giving three equations for three unknowns, which can be
solved as above. And so on for any given number of
untknowns.

To show how such equations can arise from the applica-
ion of Kirchhoff™s Laws to a network, let us write down the\.Jy
equations for the system shown in Fig. 14, which the
reader will recognise as a Wheatstone bridge,. \Lhe
equations are A 3
¢ — Biy — R(i; — i) — S(iy — i 0

R(i, — 1)) -+ Piy + Glig — ¥ }J-—— 0,
. - . w b - 1 - i
Glig —ia) -+ Qs + S(zsf_\\{é 1=au(l_)1!braly,org,m
which can be re-arranged rather more tidily as
(B + R+ 8)i;, ORi, —8iz=¢,
— Riy + (R + R¥ Gy — Gig =0,
— 8i, — Giy (G + Q4 S)y = 0.

'the reader is strongly~ad-
vised to solve these egiations
for the three currends iy, igs
i, but is warrded'wo secure
largish sheets‘rﬁ\‘ paper for
the purposg,\dwing to the
unrestrainedprolixity ofliteral
expressians:  In the present
instance) particular interest
attaghes to the currentthrough
thes branch of resistance G,

~which represents the resistance
Jof a galvanometer or similar
measyring instrument. The

reader should be able to show i,

i&hat this current, that is,

fy — i, is given by ——Mf\é\"\’\'——? ¢ o——
i, — iy = (RQ — SP) ¢/K Fig. 14
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where K 15 the simple but voluminous expression
K = BGP + BGQ + BGR 4 BGS -- PR +
POS + PRS + QRS + GPR + GQS + GPS +
+ GOR + BPG + BRS + BSP -I- BRG.
This shows that the current through G will be zero when

RQ — SP = 0, \
. P R N
that h L= 2 AN
atis, when 0= s R\
which is the well known balance condition for the simple
resistance bridge. N

Later on it will be found that even the mest pomplicated

networks carrying alternating currents £an be similarly

w\\,w_malﬁfsgdm-gt_bpg;gh for this purpose Jsiveral additional
ideas will be reguired. PN

53. COMPLEX NUMBLRSS .’I}YE Syvaeon 17
The reader has already a ‘bbwing acquaintance with

o/~ 1, and has possiblyMecided that this somewbat
perplexing symbol, beingdevoid of that comfortable and -
concrete reality that attaches to real numbers, is not likely
to count for much in practical politics. Associated with this
symbol, however{are certain ideas which will eventually
prove to be of yery great value in connection with alternat-
ing current ‘problems, so time will not be ill spent in
cultivating®a, somewhat closer acquaintance. It is, more-
over, anCintrinsically interesting symbol, and, under the
pet name of i >’ enjoyed what Prol. Whitchead described
as af gaﬁcés de scandale when it first made its appearance i
athcematics.
A\ALt present all we know about it is the definition
AN VIO XAY D1 =ixi=f=—1,

\m V™ and it is worth noting that this definition assumes the
possibility of associating the symbol i with the idea of
multiplication, so that @i X i for instance, can be taken 1o
mean

aXixXbXi=axbxiXi=ah®=—ab

This is an instance of that possibility envisaged in Section
110



/7N

EQUATIONS: COMPLEX NUMBERS

13, where ideas, in themselves incomprehensible, can be
employed without violating ¢ne’s intellectual self-respect,
it being understood that any such incomprehensible
operations stand not on their own merits, but on the
validity of the conclusions they lead to. Morcover, this
is in fact the classical instance referred to in this same para-
graph, for it will appear later on that a clear and simple
interpretation can be found for these apparently in-
comprehensible operations, \
ne

54. ADDITION OF COMPLEX NUMBERS N\

A group, such as ¢ + bi {or @ + b, it does not mabter
which way it is written), is called a complex pumber.
Such numbers have been met with in the so utibél clof
quadratic equations in the preceding secfion, —Suc )
complex nuz?’zbers can be coml}))ared w‘?&’ﬂ?ﬁ”ﬁ? aul ihyagleors in
groups ”’ referred to in Section 5, and, imthe addition of
such complex numbers, the same ideaswill apply. That
is to say, in @ + b +¢ + id, the numbers a and ¢ can be
added arithmetically, and the bé’s'can be added to the
di’s, giving (b +d) ¢'s, so that &

a+4ib +c¢ +id=Na + ¢} +id+d)
for instance N\
g + i4 4 - 18 = 1o + 12,
and, of course, similgtly for subtraction. In particular,
(@ + S\ F {a —ib) = 24,
and (a Adb) — {a — ib) = 2ib.
The first of {Hese statements involves the idea that i( — &),
that is, 1 X 0 1s o, which is seen to be quite reasonable if
iXo0 i&\réﬁrded as /= o, for — o is by definition the

same‘as.A- o,
o~
o\ 553. Tag COMPLEX ZERO

o Let a+th=o0,
) Where ¢ and & are real numbers. Subtracting i from

cach side gives

a= —1b.
But this is a contradiction in terms, for 4 is a number and
Il
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ib is not. To make this clearer, squaring each side would
give
@t =( —ib)% = ()2 =2 X bt = — 1 x b* = — b}

which is impossible, since both a? and #% arc necessarily
positive numbers, whatever the signs of ¢ and & may be.
However, the statement ¢ = --ib is not completely
impossible, because it is true if both ¢ aud & are zero, b
only in this case. 'The statcment

N\ ¢
. oA\
g +1ib =0 K N
therefore implies ¢ =0 and & = o. Dl
Further, if we are given that N

x4y =a41b, O
subtracting @ - ib from each complexhumber will give
“org.in i
(3 —a) +ily —5) 2D
so that (x —a) =ocand Q‘¥'b) =0,
ar x = aandy =N
The original equation is thg:r’t:lftfrc really equivalent to two
separate equations. ‘Thisyprocess is referred to as equating
the real and the imagig&jy parts.

56, THE MUI:TrPILfCATmN OF COMPLEX NTUMHBERS

On the abové uhderstanding (Section 53) with respect
to the associalidn of i with the idea of multplication, the
multiplicatioh of complex numbers follows the ordinary
rules, thatys,

Oda + )¢ + id) = ac + ibc + aid + ibid

\“ = ar + tbe - iad + iibd

X = (ac — bd) + i(bc + ad).

(a +ib)(a —ib) = a? - k%

Two complex numbers such as these, differing only in the
sign of the imaginary part, are said to be mutually comju
gate. Notice that the sum and the product of conjugates
are wholly real. Notice further that in general the sums
or products of complex numbers are other complex pum:
bers, so that if f{x) be any built-up number compos®
of various integral powers of x associated with constant
12
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coefficients (¢f. the general equation of the nth degree],
then if' ¥ be given a complex value (a 4 18), fla <+ i) will
be a complex number, that 1s,

fla+id)=P+i0Q,

just as f(x) is a real number if x is given any real value.

57. Tag Mopurus oF CoMPLEX NUMBERS

The modulus of {a -+ b} is the positive value of the

square root of {a? + 5%, that is, AN
mod. (a + i6) = +/a% + b O

For mstance, the modulus of (12 - 45) is 4/12% +5‘

that is, 13. Notice that the modulus of a complcx ri‘u,rnber

is thc sarne as that of its conjugate.

A very useful property of moduli is dha @ﬁ-g{}ﬁﬁp&p of g.in
the product of twoe complex numbers is thé\fame as the
preduct of their moduli.  This is easily prov Cl for

mod. {a + ib)(c + id) = mod. [(ac =~ b}) + i(be 4+ ad)]
= +/{ac — bd) -+ (ke -]~ ad)?
= Va2 kb2 F b + 't
= V@5 @ &)
— £ 5 VG )
Emod, (a -+ th) X mod, (¢ + id).
This can obviously Be) extended to the product of any
number of comph@\ “humbers, and thence to integral
powers of complex numbers, so that

mod. (a\—i~ zb)” = {mod. (& b} }" =
A WA = (a2 5,
Furthee,(fhis can be shown to be true for negative or
fractiénal values ol z,

thalls, let (@ 4 i)y = P 4 Q.
’“\Thcn, from the definition of the fractional index,
v (6 + ) = (P +iQ)",

mod. (@ - b)) = mod. (P + i)™ = o
fmod. (P +1Q))" = (VP ¥ @y
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Therefore Va0 = [P,
whence {+/at T b23im = /P74 Q2
or {mod. (a + i6)}V/m = mod. (a + ib)tim,

and similarly for the general fractional index and for
negative indices. The modulus of a morc or less com-,
plicated complex number can thus be written down ‘af
sight. For instance,

B .

mod, (2 H )" (o —idyle /(@ & o7y (VT REPH
(e +iry Vet + [

Is the modulus of the sum of twa complex-umbers the

same as the sum of their moduli ? It isn’t, btithe reader is
advised to prove this for himself. \Y;

N\

Www‘dbrfg.hg?ﬁftgﬁgffgx TO THE GENERAZ)EQUATION OF THE

N
. \¥/

\‘;

#TH DEGREE ¢

Complex numbers were it encountered in con-
nection with the solution of\quadratic equations, and it
was indicated that they waulthalso occur in the solution of
the general equation of the nth degree. It was further
stated that complex rgets would always occur in pairs .(Of
conjugates). ‘This ean now be proved quite simply. First
it is required to show that if

\'\‘w’(a + i) =P +iQ

then {a —iby» =P —i0).
¥ (a + ib)n = P +iQ),
PN I .
2 @rap T P4ig
(a — ib)» _ (P—iQ)
..af&“f"”“ @+ (a—ay ~ PFiQ) (P - i@y
» (a — ibyn _P_iQ
R CE S it ) Bl e Ty
or (a—ib)r _ P—iQ
(.{12 T 52)«:" P2 + Qﬁ*
But since

ta +ib)® =P +iQ, (va? + 53" = v/P* + Q5
K14
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as shown on page 114, so that

(a® + b2)» = P2 4 Q2.

Therefore (a —ib)» =P —1(}.
Consider now the general equation of the nth degree, that is,
Jla) = axn - bxwt Loear2 Ly oete, , .. k=0

For any complex value (e + i8) of #, cach separate power

of x will give rise to a complex number of the form P -+ iQ, O

and the sum of all these will be some complex number, say; o~

M + N, 1t follows from the above that for the conjugate

value {a — if) for x, the sum of all the separate tcrxps will

be M — ¥, that is, if A
flotip =M, L
Flo—if) =M N 3O

Now suppose that (a + i8) is known t@@ﬁbf@ﬁhﬁfaﬂ?,ﬁm g.in

equation, so that

S+ if) = i 1L
Then, from Section 55, o\
M =0 and M =0,
so that Sla—i8) =WF —iN =o.
Therefore (« — iB) must alsd Pe a root of the equation.

59. THE Squark KooT or s CoMPLIX NUMBER
if (x + i) be Iﬁ%t\square root of {a + ib), then, by
&&

definition,
£ 4t =g <+ ib
For many pu{poses it will be necessary to know » and y in
terms of a and &, that is, to find the real and imaginary
parts OLE zb)* It can be done in this way. Multiply
y itself as shown in Section 56.
(x +9) = (v + P) (x+t})

‘.' xz_), _;_Q;xy:a-}-l
Therefore, as shown in Section 55,
N/ ¥ —yt=a
and 2xp = b.

These two equations can be solved for x and p by methods
already described. In this particular case, however, the
work can be shortened by making use of the fact that the

1%
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square of the modulus of (¥ 4 #) will be equal to the
modulus of (@ 4 i4), so that

For shortness, and also to avoid typographical com-

plication later on, we shall write  for + 4/¢% 4 5%, so that
we have the two equations

PRI QO
A% — 32 — g O
whence, by addition and subtraction, N\ ™
2 =10 +a), \O
=3 -—a), N
that is, x=% vI{r+a), N

y=+ \/%_(?. _ a')_...,i\\.

www dbFtulibraandrg re determined.  In theMfhatter of signs we

NS

seem to have an embarras de richesse,, the apparent super-
tluity can be disposed of in this wa? Since 2xy = 8, x and
7 must be of the same sign {f&)Is positive and zice versa.
Therefore if b is positive O

Vatid =+t {VEFTa +iviF—a)
and if & i3 negative 4%

Vat+ib=RWITF +a —ivi—a)
To take a simplé &xample, consider /3 + 74. Hcre a i
g and b is 4_,’sg3"h*natris +4/9 4+ 16 =5, (r — a) is 2, and
(r 4+ a) is 8\\
Therefore\

Ve T =+ VI x8+iyixa}

AN =+ (2 + 1},
and/if the reader has any doubts about it he can square

“{2 + i) to make sure.

There is a peculiar fascination about the subject of
complex numbers, but this, unfortunately, is all the space
that can be allowed for it at present. Once more the
reader is cautioned against dismissing the subject a5
academic on the grounds that an imaginary quantity
cannot have any practical significance. Though academni¢
in appearance, these same ideas can, as it were, doff hood
and gown and set about a job of real work,
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Examples VII
1. Solve the equations :—

(@) x +y —z2 =12,
x -2y + 32 = 26,
5% + 2y +z =28

(b} & +y =22 P
5%+ 4y + 32 = 1%,
218 — 20y — 22 = —- L. OV
(¢) 43x% + 19y + 10z = 100, o
1008 +y —32 +3¢ =0
x —y + z =10, )
: >
2, Solve — w7
w-x +3y =6, Wwwd@t{\hbrary.org.in
2% 4 37 + 42 = 20 O
4y 422 — gw =17, e
8z — sw + 7% = 41. ‘}\
3. Solve the equations :(— R OF

mx +ny +2=(1+ ?p:fﬁ?l)a + (3 +m + 2n)b,
ax + 3y — 5= —;gh;
5% - 8y — 72 = 3Rba.

4. Show that :— A
a-tib _dsrhd b —ad
e e tiaTe

5. Find the méduli of :—
(NFD(7 — 1)

@ =y
Qﬁ;;? (3 —4i) , (12 —50)

OV (3 4as) T (2 s

~~§r§éh0w that :—

T Vim0 O
VZi=5 (1 —)va
and hence show that the eight eighth roots of unity
are i— o+ 1, & & (1 i)/ Ve £ (1—14) Va.
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Chapter 4

CONTINUITY: LIMITS: SERIES

60. Tue CoNTINCITY OF FuxcrioNs

N\
r l THE idea conveyed by the group of symbols y = f{4)

has already been explained, but it has been, €on*
sidered hitherto from what may be described “as
the static point of view, that is, we have thought of% as a
number the value of which depends in sonj&“specified
manner on the value assigned to the independeht variable x.
(** Independent variable ”, by the way, igsather a mouth-

ww w AHEuliF RO R on we shall use the blder name © argu-

O

ment 7 instead. It is less explicit, but }ts meaning should
be quite clear at this stage.) Andiler and rather more
important aspect of the matter is's\lggesled by the phrase
“ the behavicur of a function™¥ It is, as it were, the
dynamic aspect, and is cgncérned neot so much with
individual values of the fuhetion but rather with the suc-
cession of values correspenting to a continuous variation
of the argument. Puftthg it in graphical terms, we are
going to consider theshape and other characteristics of the
line which represénts the variation of y with x. The ideas
we shall meet dh.foing so arc among the most important
in the whole of'mathematics, and must be taken seriously

by anyone{who wants to cultivate a mathematical habit of
mind ag{distinct from a specious fluency in the tricks of

the trade.
Xolfix ideas we shall specify the function in the form
.\o§" = [otfz—o —+ 1.

43 The graph, or picture, of this function is given in Fig. I
N

for a range of values of the argument from x = — 6 t©
¥ = - 8 (any such range of valucs is called *an
interval ” of values of the argument).  The most noticeable
feature of the curve is that it appears to break up into two
parts, the left-hand part terminating abruptly at the point
for which x = 1, while the right-hand part seems to come
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flying sheer down out of the blue, after the manner of a
dive bomber making an attack, « flattening out > towards
the line for which y = 2. Tt is clear that something very
drastic happens to y when x is given the value 1, and 2
more detailed examination of this region will be made
later. Everywhere ¢lse the curve is a smooth, unbroken,
continuous line without any sharp angles or sudden changes
in dircction, showing that » changes gradually with x A
without any sudden . LW
jumps from a small 1O
to a large value or S
vice versa for a small 5
change in x. Varia- N
tion of this character s \
is described as “ con- W
tinucus 7, and the T +
function is said to
he “ continuous ' ¥ b\ ),
through any such W e
interval.  On  the RN
other hand, a point N
at which there 1s an BT
abrupt transition in
value, such as occurs  {
when x is given thef } o - 4
value 1, is describedh ¢ ¢ 7%
as a peint of {dis- ?ﬂls—"
continuity ', drigd”the - .
function is said 1o be ¢ discontinuous ™ at any _such point. It
is obvious that in carrying out operations with a function
one ';:{160]{ for such points, for certain operations ?vhl'ch
may{br*quite legitimate and safe in a regon of continuity
might lead to disastrous conclusions if the function has a
L point of discontinuity in the interyal concerned. {0
yquote an example from Professor Wthc_hcad, a man who
walked over the edge of Shakespeare CHff on the assump-
tion that the height of the ground above sea level was a
continuous function of his distance from Dover, would be
dead before he had time to rearrange his ideas on the
subject.

[=

U ihrall'} .org.in
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The econtinuity or otherwise of a function is therefore a
matter of practical importance. J'hat heing so, we must
try io find some exact description of what we mean by
continuity, some test which can be applicd over any region
in which there is cause to suspect irregularity of conduct on
the part of the function; for although the above pred
liminary account conveys the general idea, thosé
readers who have acquired the fastidiousncss in ghink-
ing which is essential for mathematics will dentainly
not be satisfied by so vague and woolly a déseription.
“ Gradually **, for instance—what doecs S“gradually ”
mean in terms of the fundamental ideas of Mathematics?
The practical man might be tempted %0 )rfeply that the
variation of y is gradual over any regionin which a small

fgﬁﬂauccs a correspondinéjy’ small change in 3

But what does *small ” mean ? s is probably where
the practical man begins to geflahnoyed ; but we cannot
help it. Comumoen sense is noAdnough. It is essential to
realise that there is no abstraes fuality of absolute largeness
or smallness in numberspor indeed in anything else, lfor
all magnitude is relatiye.® Even in ordinary conversation
the word * large ” is"$e vague as io be meaningless apart
from its context, sﬁz;tcd or implicit. When the Englishman
says, *“ That is @\large apple »*, he mecans that it is large
compared with, that is, larger than, the average apple of
his expericace, and when the American replies, * Large !
Call thagyadarge apple ? * he is presumably thinking of
the pumpkin-sized aflairs which he has no doubt could be
foundhgrowing on his uncle’s farm in California, if he had an
nclein California. Herc is one and the same thing called

Jarge by one person and small by another, and suc
yexamples could be multiplied indefinitely to show that
v ““large ” and “small ¥ are no more than current and

convenient abbreviations for *“ larger than * and *° smaller
than . This is equally true of mathcmatics, which is,
after all, no more than an idealisation of experience.

two numbers, one can be smaller than, equal to, or larger
than the other, and those are the only fundamental ideas
about number which can be admitted in the description
of a mathematical couception.  Our description 0
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continuity must, therefore, dispense with any ahsolute
“large >’ or “ small ” and employ only those fundamental
ideas aboui number on which the whole science of
mathematics is based.

First we need some word which will serve to distinguish
a point of a function from a restricted interval of values
containing the point, that is, extending on either side of it.
The word used is © neighbourhood .~ Notice particularly
that 2 statement cannot be made about the neighbourhood\.J
of a point unless there is a finite interval of values, cOn-
taining the point, of which the statement is true. _Notice
further that a statement made about the neighbourhood
of a point may or may not be true of the point itself.
Nothing is said about that when the neighbeurhood is
mentioned. It is in fact a very uscful\fmglchﬁ,@;‘.g{%rgrg‘ in
“ neighbourhaod * that it distinguishes Ajetiveen the point
and some restricted interval of valucs;‘\ontaining the point.
Now take the function we are conslfcrmg, that is,

§ = IGL"(I:{) ._'*.. I.

For the value g/2 for x it is vety easy to show that the value
of y is 101 ; but we cannof say that the function has the
value 101 in the neighbourhood of x = 3/2, for there is no
finite inferval of valugd\of » containing 3/2 of which this is
true. But we can§y'that in the neighbourhood of x = 3/2

7 differs from 16@ by less than .1, of, another way of saying
the same thiny, approximates to 101 within a standard of

.1, becaugera finite interval of values of x can be found for
which (81§ truc. By a simple calculation which need
not be/dctailed, it can be shown that 7 approximates to

ron within a standard of .1 for all values of x between
14099 and 1.5001. In the present instance we coulgl l?c
uhore exact still, and say that y approximafcs to 101 W’lth}ll

. (V% standard of .ocoo1 in the neighbourhood of x = 3/2,
V™ because again a finite interval of values containing 3/2 can
be found for which this is true, though of course if will be
a very much smaller interval than before. Actually,
however small the standard of approximation be taken,
it can be shown that y approximates to 101 within that
standard in the neighbourhood of x = g/2, and we can
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say at once that y approximates to 101 in the neighbour-
hood of x = 3/o within every standard. This is exactly
what is meant by continuity. = Expressed more formally the
statement becomes: A function f{x) is continuous for
a value a of the argument when in the ncighbourhood of |,
the point for which ¥ = ¢ its value approximates to f4)
(that is, its value at a) within cvery standard. The Aull
beauty of this definition will not perhaps be realised, \éﬂ"ﬁh
once, but it will repay thinking about, for it js{a fine
example of the precision of mathematical theught. A
lawyer experienced in the difficulty of clothiny rdeas in
words would recognise it with delight as a gefect fit.
The function we have been consideringball pass this test
at every point except that for which x ==\1,"and is therefore

ww w dbapglifyapx. o8 8dArwhere continuous':{:%iapt at x=1. It

N
irequency or of the circuit constants, and it is necessary to
% be prepared for such happenings,

is not, of course, suggested that.éycry function one en-
counters must be scrutinised AlNover with this sort of
microscope. One soon becomes-able to tell by inspecction
where critical variation isdikely 1o oceur. Such points
will, generally, but not inyasiably, be associated with values
of the argument for which zeros or infinities appear in
some part of the functional expression. This does not
make the matter (acddemic, for though it is true that
infinities do notgcur in real life they frequently occur in
the functions\(hai: we use as a convenient approximate
representation of some particular slice of real life that we
may be¢ gentending with. For instance, neglecting the
resistanfe in a high frequency circuit caleulation maY.be
hoth degitimate and convenient in general, but, by freeing
tlﬁfb‘ﬁction of its ballast it may introduce the possibility

xtravagant acrobatics for certain critical values of the

61. LimiTs

We will now consider the hchaviour of the above
function when «x is given the value 1, and in order to see
more clearly what is happening at this point we shall
examine the rcgion with a magnifying glass. In other
words, we shall tabulate values of x and » through 2
122
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restricted interval of values containing © —

x F
9 1010 -1
‘99 10~100 4 1
999 10—1000 1. 1
N
2 A
. ? \.
10 : A\
L 4 N
1-GOI rotofd | g EN
[0l 1019 4 1 K2,
1°1 1o1® + 1 & ©

"Uhis shows that as the value 1 for x is apgl@af:hcd from the
less-than-1 side, ¥ approximates morc anaunore closely to 1.
On the other hand, if the value 1 foi& Js approached from
the greater-than-r side, p increases, contirmally, and the
closer x comes to 1 the greater whe value of . The first
set of values would lead onc @ Suppose that » becomes
when x is 1, but the second set suggests that y becormes
sreater than any finite fumber when x is 1; but the
function is single vah&ed everywhere clse, that is, for any
given value of x théfe'is only one value of y. Why then
should it assumdkangort of dual personality at _thls point ?
The answer ighthat it does not. At this point, on the
contrary, it l\m's ho defined value at all, for 1t becomes

y = 10800 4 1 =107 + 1

wwiw.dbraulibrary.org.in

and {0\ not a number at all. We saw in Section 23 -

thamihié whole structure of mathematics would collapse
if 1jo were treated as if it were a number subject to the

ordinary laws of arithmetic. This, then, is the first thing

“\\to notice ahout this point—the function has no defined

value at all when x is 1. But from the tabulated values it
is clear that y has a definite value when & = 1 — A, however
small & may be pravided it is not actually zero, Moreover, 1T 18
clear that y can be made to approximate to I w1thlr.1 any
desired standard, however small, by assigning 2 sufficiently
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small value te A Under these conditions the function is
said to have a finite limit when x tends to 1, although it has
no defined value at all when x ¢5 1. The idea can be
expressed in various ways in symbols ; for instance,

o f(1 — k) =1,
h—ra

which is quite explicit, or again

i =1, X
i—>1—n y ’ '\..\
or i flxy =1, ' QO

A—1--0 3
where x — 1 — o is taken to mean that the valug® Tor x is
approached from the less-than-1 side.  Notice pagticularly,
that in any case such as this, where the f11ﬁ§i0n has no

W w AP YO Bl 2 given value of thé\afgument but
nevertheless approaches a finite limitlas the argument
approaches this value, this finite limit/is never actually
reached, although the function can‘b'é madc to approximate
to it within any desired standard. {_This idea of a lmit is ol
the utmost importance in magth‘tmatics, and has been the
subject of much criticism @ud research, particularly ip
recent years. Unless thefeader understands it thoroughly
he can never hope for nything better than a dangerous
rule-of-thumb knowledge of the calculus, so he is advised
to go over this palgt“z}gain and again if necessary, until the
understanding @f\tis assured. The formal statement of
the idea is ysually expressed in some such way as this :
A function #{%)is said to have a limit L for a value « of its
argumenpiffor every quantity & another quantity £ can be
found sack’ that when x differs from a by less than &, f{%)

dif‘Elf\ﬁ‘om L by less than £ This has always scemed
tothie writer a casc where the definition was much harder
.t{)’ understand than the idea it defined, The reader need
osnot stick over this definition, but must make surc of

\"\: + appreciating the idea as illustrated in the above example.

In the example quoted, the limiting wvalue is never
actually reached, since the function has no defined value at
the point ; but the actual definition of a limit does not
exclude the possibility that the limit of a function may be
the same as its value at the point concerned. In fact, if the
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reader has really understood the definition of continuity, he
will see that it requires that the function shall have a finite
limit for the given value of the argument, that limit being
the same as the value of the function at the point. In
genersl, however, the rather difficult conception of 2 limit
is substituted for the simpler idea of the value only where
it is reaily necessary, that is where the value does not exist.

So much for the behaviour of the above function when #
tends to {1 — o). 'The bchaviour on the other side of this, O
point is quite different, though a somewhat similar ideas\
invoived, The tabulated values show that y incroases
very rapidly as x approaches 1 from the greater-than-{ side,
and the reader should have no difficulty in seeing thaby can
be made to cxceed any finite number bybringing x
sufficiently near to 1. This is comvenitsitdyd ‘g
perhaps not very happily, expressed by, saying that ‘the
limit of » under these conditions Is inﬁl{'ty, that is,

in

ity == 20N
r—1+0 « \J

which really means that y hasshio finitc limit at all, but

continues to increase withoutJimit as x approaches 1.

Yet another kind of lintity the antithesis of infinity, 15

iflustrated by this funetion (it was chosen, of course,

because of its versatilifyNn this directionr), What happens

when ¥ becomes yery large compared with 1?7 The mdex

of the ten is 1/(#%> 1), and it 18 clear that as x becomes

larger and larg€ythis index will become smaller and smaller,

By making,#sufficiently large compared with 1, f(x — 1)

can be made smaller than any fraction of unity, however

small. nt,\cm never be made zevo by increasing %, but it can

be made to differ from zero by as little as we please by

making x large enough compared with 1. Here, then, the

Glrception of limit comes in again, and we say that the

~ Jlimit of 1/(x — 1) is zero when x tends to infinity, that is,
\/ i 1f{(x —1)=0

X O

It is sometimes stated in textbooks that there arc two

kinds of zeros in mathcmatics, the absolute algebraic zero

arrived at as the difference of two equal numbers, that is,
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a—a=ao,
and another kind arrived at, or rather never guite arrived
at, as the limit of 1/2 when « is increased indefinitely, thatis,
It 1/a = 0.
& —x G
The distinction may be important in some connections,
though it is rather reminiscent of the waitress who, when
asked for coffee without cream, said © I’m sorry, sir, N
have no cream ; but you can have it without milk *. o\
Since it 1f{x — 1) = o. \ 7
F— 0O p
it follows that a2
It 109D = 100 = 1, N0
www . dbraulibrary.org.ins o
and that

%
w

AN
It. 1otfen g 1 Ly
, K &
that is, PN

Under these conditions théine representing the function
is said to approach the$ine y—2 asymptotically, that is,
it gets closer and closer to it as  is increased, but never
actually reaches it, { It'is tangendial to it, but the point of
contact is at infinity.

In an exactly\similar manner it can be shown that

N\

O & flx) =2,

O F—»— 00
A\ S . e
50 tha,g}ye have for this function the four limiting
conditions :—
\/ i x) = 2,
& e
A\ I flg) =1,
:"\" £—>1—0
™ it flx) = oo,
F—>1+4o

ii. Jix) = 2.

. Now we come to a case which occurs very frequently
In practical analysis, and which might cause considerable
126
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perplexity to a person who had not assimilated the above
ideas on limits. Take the function

_ _xt2x — 3
¥ =Fx) b
In general the value of this function for any value of the
argument can easily be calculated by ordinary arithmetic,
but when x = 1 we have

y=F@) =155

Now o/o is a group to which no meaning can be attached,

in terms of the fundamental conceptions of arithmetic.

What then are we to do about this? In the ﬁr&t{pﬂact_:,

since the two quadratic expressions vanish, whgibhEadd org.in
follows that each is divisible exactly by Qctﬁ_ 1) (see
Section 45).  With this clue it is easy to expréss the function

in the form S

2\
o\

)
o

F(x) _(x—1) (x gh

(x — 1) (xH4)
and now obviously we can divide the top and bottom of
this fraction by (x — 1), so that™

) IS e
and thereforc whengi=1,
N Fw) =3

All very plausible; isn’t it—and quite wrong. It just
shows how cagaliil one has got to be.  The top and bottom
of the fracfibii can only be divided by (x — 1) on the
condition(that (¥ — 1) is not zero, that is, on the condition
that &&& 1. Otherwise we are dividing top and bottom
by zetp; which, as we have seen, is definitely not legitimate
urder any circumstances whatever, so that just precisely

“the’case in which it is essential to divide through by (x — 1)

Ni§ the onc in which it cannot be done. However, let us
stop short just on the edge of the precipice, instead of
falling over it, that is, put x = 1 + % instead of T, & being
a small quantity compared with 1. Then
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Fix) — F(i4 B) = H

and since £ 1s not zero,

A} = _{a+h
Fioy = P+ ) = & 1,
and this is true, however small 2 may be as long as it is nof >
zero. Now by making 4 small enough, the fraction can be
made to differ from 4/5 bv as little as we pleasé.\In
other words, the limit of the fraction when x tends t138 4/5.
Therefore, although F{x) has no defined valuc when x 5 1,
it has a definite limit when x lends to 1, thaglimit being
4/5, that is, RS
It Flx) = af5. N
www dbraulibrary.org.in 1 %) =45
Moreover, since the whole of the ahove reasoning can be
repeated when x = (1 — &) with thé/same result, the limit
is the same for either dircctionsfapproach, that is,
It.  F(x) = 4fs.
F—r1do s e
What are we to say abiout the continuity of the function
through this critical.peint ? It is a difficult question to
answer, and, as a”mat'tcr of fact, the writer cannot give @
definite answer himsell and has not been able to get any
authoritative geperal statement on the point, The difficulty
is that the fﬁ]ition certainly docs not satisfy the continwiy
test at thé point, since it has no defined value ; neverthe-
less, i, will be found that the function can be plotied as 2
perfeétly smooth and apparently continuous line through
this qoint, and, moreover, it satisfies the continuity defim-
Juon if the limit when x tends to 1 be substituted in the
(definition for the value when x = 1. Actually it is very
\'f ™% “unlikely that any error will arise in practice from assuming
L  that this function, or any of the very large number of similar
\/ functions that are involved in practical mathematics, 1s €00~
tinuous through this undefined and indeterminate point,
but in the absence of any certainty in the matter any
operations which involve the assumption of continuity
will have to be carried through with some degree of mental
reserve,
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1

So much for * continuity ”, ** value »*, and * limit ”,—
ar, at least, so much for an elementary introduction to these
difficult but intriguing ideas. It may have seemed wordy
and excessively fine drawn, but it is necessary all the same,
for, as Prof. Whitehead has pointed out, ¢ large parts of -~
mathematics as ecnunciated in the old happy-go-tucky \
manner were simply wrong ', It is even probable, or at A
least possible, that the refinements of modern mathematics {0
may prove insufficient in some directions. In any case, an QO
excess of precision, if it is a fault at all, is a fault in the right
direction, and is worth pursuing not only for its own-sake’
but for the mental training it involves. There is ng foom
for slipshod thinking in mathematics. A\S;

\
wwwa&{waul ibrary.org.in
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BASIC MATHEMATICS
Examples VIII
1. Show that the function

a -+ bx
Y= -f dx
is discontinuous when x = — ¢/d. Tind the lirgifs ™
of y whenx -» — (¢/d) + o and when x> & ?Q:\
2. Find the points of discontinuity of oM
X2 —gx + 2 A\
Y= o 3

xE—gx + 120 AN
and find the limits of y when x — .;;&0,’ 40, k@

3, Find the limits whenx— ¢ & o
TAaall

brary.org.in

3 — (2 4 b ab

Y e B a
AN\’
4. Find the limits of ()"
x3 —%x®* - 11x — 6
JJ = E:’);A“_*A:& T 8
SRS 70 o 14 —
when x—».:if& 0,24 0,44 0

5. Find the 1@& when x — oo of
Oy - e+ bet o
xg\\ TS o px g
6. Find-the limit when x — g of

2N

) V¥ —+a+/x —a
{4 —— .
’\'\J ;\/xﬁ ___,_aﬂ
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62. SERIES

The word ** series ” has essentially the same meaning in
mathematics as in ordinary speech. Any ordered
succession of numbers

A1y Qyy 83 Cgs Gy « + + +
is called a serics, but a random succession, such as
18, 1, 5%, 7%, 5008, etc., etc., O\
is not of any practical interest. It is form without.J \
significance, and these numbers might have been arrangeds
by 2 trained monkey or a gust of wind. But in the matter
of series, as in everything else, any sign of law or design
gives significance to the form, and the mind, Decomes
interested. For instance, \
of1, 2/3, 4/5, 6/7, etc., &&\;{.@}‘auhbrary,org,jn
shows evidence of thought, and nothingde§s”than human
could have arranged this series. It ig dc\signed according
to a definite plan and can be related(ty the simplest series
of all, that of the cardinal numbers,\by means of a general
formula which expresses this Jaw and summarises the
design. The law can be put ji*the form
e —2
W om -1
@, being the nth terxﬁ.x\ The first term is cbtained by
putting 7 == 1, thatJs, o/1, the second by putting # = 2,
that is, 2/3, and sdon. An ordered series of this kind really
grows out of.theidea of a function, for the general or nth
term is a ft}nét\lon of n, that is,

A& = f(n)
where the argument n takes in succession the values
1, 258, etc. Moreover, the function need not contain n
and,humbers only. It may contain one or more letter
“§wnbols as well. For instance,

) 3

\ 1, 2%, 342, 428, . . . . oma"?
is @ scries the terms of which are functions of x and of .
Thus an infinite variety of form is included in the gencral
idea of a serics, and the series form of representation plays
a very large part in theoretical and applied mathematics.

131



BASIC MATHEMATICS

63. TUR SUM 0OF A SERIES
Next to the form or law of a series, the most important
thing to know about it is its sum, that is, the sum of its
terms. Think of a number, for instance, say, 21493. This
is the sum of a series, a series of powers of ten, for it is only, \
a short way of writing

\

(2x10%) + {1X10%) + {4x10%) -+ (gx10%} + ( \55‘“30)-

Again, 3.1415 is a short way of writing A\

(3X10%) 4- {1 x107]) + (4 X 107%) + (1% Ir{";:}"ﬁi—(5>< 1074,

a series which symbolises the fundamiental process of

www.dbegpisserrasignn  This illustrates the basic character of the
summation of a series which we mufstnow consider.

First we shall take the simple“¢ase in which there is 2

limited, that is finite, number ofyterms. The sum of such a
series is of course just what the phrase implies, that is the
number which results frém thc adding together of all
the terms of the seriespbut in this connection the wor
sum is usually given a¥ather special sense, and finding the
sum of the series‘means finding some gencral formula
which provides alshurter way of arriving at the result than
by the detai{l;gna’ddition of the separate terms. Take for
instance a, shmiple  arithmetical progression ™ as it 1§
called, in Svhich each term differs from the preceding one
by a censtant number, for example, g, 7, 11, 15, etc., o, It
gen;r@l.’terms, g, a+d, atod, a+3d ... .8 +
(n<%1)d. The sum of n terms is

(\ Sa=a+ (a2 +d) 3 (a + 2d) -} (a + 3d)

\,j‘ A {a +(n —2)d} + {a + (n — 1)d}.
“\* In this case a short formula can be found for the sum by
N/ means of a trick. Turning round the right-hand side,

v={a+ (-0 + (ot (x —2)d)
+. ... at+d)+a

and adding these two equations term by term gives
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28, == {20 + (n — 1)d} + {=a + (n — 1)d}
4 {2a + (r — 1}d}, etc.,
. . n terms in all.
= n{ea + (n — 1)d},
50 that

S =’§ f2a + (n — 1)d} = n (“ ;f)

where =g (n —1}d, O
that 1s, ! is the last term. O\
Notice that (g - {}f2 is thus shown to be, as lnti\f;cd 15
obvious, the average value of all the terms of th(;»szarles.
Again, for another simple form, thq‘p@‘ga&mlﬁ'@gpg@y&.g‘ in
series in which cach term bears a constant ratio 10 he
preceding term, for-example, 4, 4, 1, 2, gtegor, 1n general
terms, 4, ar, ar?, ar®, etc., . . . . v Nhesum of # terms s

~
R

Su=a + ar - ar? 4 ar® + arly te., . . . arvh
Therefore o ’: N
Sy = ar + ar® 4+ @® + ad)etc., . . . @i Aar,

and by subtraction,
Salr — I}Q ar* — a = a(r* -- 1).
Therefore \\S . alr® —;1)
= .

r—1

N
%

For instance™hé sum of 32 terms of the series ¢, &, 1, 2, etc.,
would be /"

O et —1)
Nl S0 =Gy
"\n“:; = 23t — i—.

“\"Phis commemorates the tragic fate of the desperate fugitive
Vwho offered a blacksmith a farthing for the first, a hal-
penny for the second, a penny for the third, and so on, for
the 32 nails of the four shoes of his horse. The bill came

to just under four and a half million pounds. )
In addition to the above two simple standard series,
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the arithmetic* and the geometric, there are various other
types which can be summed by means of general formulz,
but these are not of much practical importance, so we shall
proceed at once te the much more gencral propositions
relating to the sum of an infinite number of terms of
a series, "\

64. THE Stx To INFINITY. CONVERCENCY AN,L{‘\
DIVERGENCY a\

Ny
First, what is meant by an infinite sericg ) €riven a
general term e\

a, = f(n), S
say, G

www . dbraulibrary.org.in I \
Iy = Pyt \\

tor instance, then if there is ng u’@er limit specified for #,

the number of terms can exceed any finitc number, however

large, that is, can be infinité, - What, then, is the sum te
infinity ? It cannot mean “the result of adding the terms
together, for that is an pftending process. It is conceivable,
however, that S» may*have a finite limit when 7 is increased
indefinitely, that is{§t may be possible to find a quantity §

such that, by making » sufficiently large, S» can be made

to approximate t6 § within any standard, however sn‘lf’ill-

The quantity $1s then called the sum to infinity of the scries.
Actually iti igthe limit of $» when z tends to infinity, that s,

¢ \ §= I 8.
9\ n— o

'ﬁ\\mThﬁ limit § will never be reached by the sum of any
{inite number of terms, but it can be approached to any

A\ desired standard of accuracy by taking a sufficiently Jarge

" number of terms. Take, for example, the series quote
\ V" above for which
1

@n = cai-

This is a geometric series of which the first term, 4, 15 I
and the common ratio , . From the formula giver

* Prencunced with the accent on '* met ",
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alyove,

1ln
S, = 1X O =3 o —
n (1 _ %) { % )
Now by making = sufficiently large, (1 — 4") can be made
to différ from I by as little as we please, that is, it can be
made to approximate 1o 1 within any standard, so that

S = u—fi’ao Sy = »E-w 2(1 — §) = 2. ) \' \J)
In genceral, for the geometric series g >
_a(1 —1m) N
" T —r ° ¢ g.'

and provided 7 is less than 1 numerically; i limit of

1 — r* when r tends o infinity is 1, and, abraulibrary org.in

- L _ . (L
S T S = neon AT
X )
—_a O
I -t-:-"

It should already be clear that not all series will have a
finite sum to infinity. Inythé above case, for instance,
if r is cqual to or greater, than 1,

S = a1y a(r — 1)
AL — 7 r— 1

will increase wiﬂ%}t limit as # tends to infinity. In fact,
series can be.divided into two classes—those which have
and those hich have not a finite limit for the sum to
infinity. sSefies of the first kind are called convergent,
and playfa very large part in applied mathematics. The
oth c called divergent, and are not of much use to any-
oneN "(Note : A series will be called divergent unless Sa

9és to a finite limit as # tends to infinity, in accordance

with the definition of limit ; but it does not follow that S

will increase without limit for all divergent series. For
instance, the series a, — a, 8, —d, ctc., which is a geometnc
series having a as the first term and — 1 as the common
ratio, gives S, —=oor —a according as n is even or _odc!,
however large # may be. This kind of divergent series is
called * oscillating *.)
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It 15 clear that the important thing o know about an
infinite series is whether or not it is convergent. If it is,
then although it may not be possible to find any simple
expression for the limit of the sum to infinity, as close an
approximation to it as may be desired can be found by
actually calculating and adding together a sufficiently
large number of terms, whereas if the series is divergent,
this would be a vain pursuit of something which d6ss not
exist. Where a series is a function of n and of seihe Gther
independent variable x, for instance A

1, x, %%, 23, X% etc,, etc. . . w.fx-"—‘l,
the sum to infinity may be finite for ;y«(?@r\tain interval of
values of x and infinite or oscillatingMor others. In fact,

v v Abig IRRAS S shown that this series is convergent for all

\\;n'

values of x between plus and minns 1 and divergent for
all other values of x. In anyrease of this kind it will be
necessary to know for whatdntérval or intervals of values
of the argument the serieg is convergent.

For these reasons a (geeat deal of research has been
directed to the discover ng of tests for convergence, tests
which can be appliedto a serics as a preliminary operation,
to find out whether and under what conditions a sum to
infinity actuallf\eéxists, The research has so far failed to
establish ang\single test of universal application which
separates_the" sheep from the goats ; but a Con51d.erﬁ}blc
number{ of tests of very useful even though limited
applicability have been developed. A few of the most
ust:%l“ of these will now be described, but for a full account
of (this rather difficult and voluminous subjcct some

’xcta’ndard textbook, such as Chrystal’s Algebra, should be
& “consulted.

65. TESTS FOR CONVERGENCY
The series will be represented by
@y, 4, a4, Ay, etc,, ete., . . . . ap,

an being the nth term.  Two perfecily general points should
be noted first. The sum of any finite number of terms 15
finite. Therefore if a series can pass a test for convergence
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for all terms after a certain point, say the rth term, then it
is convergent, even though the terms up to this point do
not satisfy the convergency condition. Again, if a given
series of positive terms is convergent, any serics differing
from it only in the sign of some of the terms will also
necessarily be convergent.

A first minimum test of convergence is that

N
nifﬂan:o’ .\"\"\

for a series is not convergent unless Sp, Sappr Snppr EEC.
converge to a finite limit S, so that Su, Spyas Setsy €105 differ
from &, and therefore from each other, by a gdntity

. . s - . - S
which can be diminished without limit by making »
sufficiently large. Therefore v Abwbulibrary.org in

It (Sppr — Si) = It =0
oo &

5 — B — 00 \‘.
(Note that ff. duy, is the same asNt® a..) A series
n— 00 (n %

of which this is not true cannotbe-convergent. Unfor-
tunately, very unfortunately in fact, it does not follow that

a series is convergent if £, @."= 0.
By

For instance, the series(
x,ir",\r 1 1
\\2‘9 3) 4 L n
fulfils the condifion, but it can be shown that this scries is
divergent. Thescondition is therefore a necessary but not
a sufficient{gne. It is nevertheless a useful point to
remember,{@nd will sometimes save further investigation.
A sexles is convergent if the ratio of each term to the
precéding one is numerically less than unity ; for

\' 4 +a; +a;+e+a - - T
\ ‘vtc., etc., ad inf., can be written in the form

ﬂl{l—}‘hz-f-l-

Galy 4 G4030p 4 GsF4858s
Ay | dz840; Gy

.. . etc., etc., ad z'rgﬁ}.
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Now by hypothesis

.‘.13 <7 T

4

Gy

% «r )

a, QS
ete., ete,, where r <2 1. Thercfore the sum of th:;asries is
less than \ )

a(r+r+r24 4% 0 et ctcy bd inf).
But O\
Tbr 4+ 40t | cte/Ot, ad inf
=1 =7, 0

is therefore less
www,dbraﬂfge ris lcss than 1. The sum of\(}}-c scries is there

N\

N
.
Y

w

/;

Ok

1212} and is therefore, &0 vergent.,
Naotice that this proof W1ll bgaak down unless

a:+1< 1 numcncall}
n L 3

however large n mag~ B, The series will therefore not be
convergent unless \yy

B ey
e o gy
Conver&ci} if the above condition is fulfilled, the series 18

convergcht for let
.\ \¥;

\' . i %_1 << r, where r < 1.

H— o

< 1 numerically.

"Thcn by deﬁmtlon, if m is made large enough,

Ml oy < e,
am
however small e may be, and if ¢ is made small enough,
) rte<a,
since r<1,

If, therefore,

it _.a_‘mﬁ - 7,
"0 gy
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where r <= 1, we can find some fixed term, say the mth,
from and after which dmy /@ is less than 1. The series will
therelore be convergent as already shown.

In addition to the above, there are two comparison
theorerns which are of use.  Given two series

Gy, Ggs Gy, Ggp G5 + « + G . - ©tC., €lC, ad nf.
and A
by, by by by by - o . B . . €tC, CtC, ad inf. R

of positive terms, then if the a series is convergent and eac
term of the b series is less than the corresponding tefniiof
the o serics, the b series will also be convergent.g Lhis is
sufficiently obvious without any formal proof. \y ‘

Another comparison, not so obvious, is this\NIf the ratio
of corresponding terms is always finite, (hp, lﬁlfﬁf“ér&.&org. in
either both convergent or both divergent, Suppose the
a serics to be convergent, its sum tojjdfinity being Sa, and
let £ be the largest value of the ratio by, of any two corre-
sponding terms. Then the sum ©f the b series is less than
kSs, and the b scries is therefgke®convergent. If, on t‘hc
other hand, the a series is, divergent, its sum to infinity
being infinite, and r is the smallest value of the ratio of two
corresponding terms &, g, Mhe sum of the & series is greater
than r times the sumi\of the & series, and the & series 18
thercfore divergerfeS ™

A useful test Serigs to which the above theorems can be
applied is _ W

I 1L ) , L+, 1

o
whicl%czm he shown to be convergent ifkis numcrically
greater than 1, and divergent if £ is equal to or numericaily
Aess than 1.

etc., ete., ad inf.,

“\J All the above tests of convergence have been siated in

/ relation to serics of positive terms, but in view of the general
statement made ahove about series of fvhich the terms
vary in sign, there should be no difficulty in applying them
to such serics. It should be pointed out, however, tpgzre
are series which are divergent if all the terms are positive
but convergent if they are alternatively positive and
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negative. In fact it can easily he shown that a series
having alternatcly positive and negative terms I8 con-
vergent if each term is less than the preceding, and if the
terms decrease without limit in absolute magnitude,

60, Sove IMPORTANT SERIES Q)
One of the most useful series in the whole of‘mg.the-
matics is LW
mim — 1) m{im — 1) im 2 O
[, mx, T . /I xz’ ) 4 / Xa ﬁtc., ete.

1.2 1.2.3 N
This, for a reason which will appear lafery is called the
Binomial Series. The general or nth wehm is

— — — ! — 2 -
www dbraibealBhgant (M — 2)m — ) NN (m —n+2)

..\:.

N

e

1.2.3.4: . ,,!;..\ fn - 1)
and the (n + 1)}th term is theréf&rc

gy = B —D(m —2)(m\E ) L (m—nt1)
+1 I.Q}éél} . . . R

This, by the way, ¢iatroduces a new notation. The
denominator in g, ps'the product of all the whole numbers
from 1 to n. Thi%is 2 group which very frequently occurs
in mathematies) ‘especially in series. [t is written for
shortness | _;\‘zﬂid is called * factorial »>’. There 15 an
alternative and more recent notation in which it is written
n!  Thisohas the advantage that it is all on one line.
It is)still called “ factorial n > in this form, though one of
the brighter sort of mathematicians always refers to it
#4 By Jove !|” The name has not hecn adopted i

A eaching circles because it is liable to disturb a class.
&

Returning to our series, the first thing to notice is that if
m is any positive whole number the series terminates at the
{m + 1)th term, because the (m - 2)th term contains the
factor

m—(m-+2) + 2 =o,
and all subsequent terms will contain this factor also.

If m is negative or fractional, howcver, the series I8
infinite, that is, does not terminate. Under what conditions
will it be convergent ? In the absence of any obvious answer
140
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the first thing to investigate is the ratio of @uyq 10 dn. Thisis
(m—nt+1), (1 _ ’l?ii).
n n
This ratio can be made to approsimate to — x within any
desired standard by sufficiently increasing =, however
large m may be. Thus, if x is less than 1 numerically there
will in every case be a term in the series from and after

which the ratio of aaq to ax is less than 1. The serics s

thercfore convergent provided x is less than 1 numerically,
Another important series is

74

X x2 xB xt A7 xn1
Ty
1P al? gb 475! (n —1)!

\ 3
. - . etc, ct\cQ"ad tnf.
This is called the Exponeniial Series. In thia'r:a‘sc
LA AN

N

braulibrary.org.in

Gnpy _ % (n _'_I) !\ £

ol O et
Now, however large x may be, therewill always be some
term in the series from and aftex which x/n is less than 1

numerically. This series Is therefore convergent for all

values of x. &Y
The scries N\
2 .8 4 poch X
x% x ¥
x 4 e (— ot .

P2 g AL |
Nl etc., etc., ad inf.
is called the ng}nthmic Series. Here
g A _ Sy G
N\t n+1 x(n+i)’
and thlé%lﬂ always be less than 1 nmm:_ricall}r provided
x is'less’ than 1 numerically. This series 18 therefore con-
vergent for all values of x between plus and minus I.

o ~.”:"I‘here is, of course, a host of other series which Play a
\ arge part in applied mathematics, but these will be
) considered individually as they occur.
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Examples IX

I. Show that the series of which the nth term 1san + b
is arithmetic. What Is its first term, and the sym of
the second fifty terms ?

2. The first term of an arithmetic series is n? _ 5 +1,
and the common difference is 2. Show that the sumON
of # terms is #3 and thence show that

£

£\
13— ; R,
28 =g 45 O
38 =749+ 11 A\
43:13+I5+17—}-19 e\
etc,, ete, - { &

3- Prove that if the sum of # terms of a s?:i:ié} is g (1 1),

the series is geometric. Find thesfirdt term and the
P2\

4- Prove that in an infinite geothietric series {commion
ratio less than 1) the ratio ef\any term to the sum of
all that follow it s constagt

5. Show that the serjes ofiwhich the general term is

1(n® — &) is convergent except when « s the square
of an integer. N

6. Discuss the conyergency of the series having as nth
terms :—

@ x4 1)
B (P £ )
&) s&y " ... {2r + 1}

Negra00 T
N
O\Y

N/

S s

Ege
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67, THE Bixomial THEOREM
The Binomial Series has already been introduced. It is

?Hf'.-‘.?i T 1}x2 m(m-—- I_}_(??E__—' 2J'??.ctc_, etc_’
2! ’ 3!

the general or nth term being

I, mx,

mn— 1) = 2)m—g) . mataet (O
r—nt .
The further discussion of this series will lead us to one gfithe
most famous theorems in the whole of mathema%:x ‘and
certainly one of the most useful—the BinomialNTheorem.
(Itis, incidentally, one of the oldest theorgras, Sy aéhibrdingorg.in
to Hoghen, its foundations were laid by. OmanKhayyim.)
The name sounds rather impressive, and ¢he series itself
logks very complicated and mathematidal ; but, after all,
1t s only a number, or rather a set of @mbers.  To make
sure that our feet are still on solid gréund, let us materialise
this airy spirit and give it a substAntial form by putting
M=5and ¥ = 2. The numhers then become

R4, X 8
5 X2 X %x.ﬁ“’ -SX—;;(_E

}><16 5X 4 X3 X2XT X3

kS X : Ty
»¥ 2 5X4X3X2
that is, AN 1, 10, 40, 80, 8o, 32.

There ard Bﬁly six terms to the scries in this case, for the
Sevent and all subsequent terms contain the factor o in
the mimerator, The sum of the six terms is 243.
. (8o much by way of reassurance, in case it was necessary.
\h.kj'w- We can return to the symbols and try to find some
Simple formula for the sum of the scries when m is a positive
iieger. We have already seen that in all such cases the
Serles is finite and terminates at the {(m -+ 1)th term. The
um of the serjes ig clearly a function of x and of m, so we
tan write
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m(m — 1)x% |
mm = x

f(x:m)=l+mx+ 2l

m{m — 1){m — 2)x*

-3t
Now multiply each side by (1 -+ x) and arrange the vight-
hand side in ascending powers of #, as in the original seriess
The muitiplication is quite a simple and straightforward

process and the reader will have no difficulty in sl‘;(\n’vifrg
that {

)
{flxrm)(t+x=14+{m+)x+ @_—f-_g%n;x +
(m + I—):—:: {m — Il\rg, ctc., ete.
wwrw.dDlowlitheryighg-tmnd side is the originkl series but with

{m - 1) written everywhere inste&ti' of m, that is, it is
Flx, 1t 4 m),* so that
L om} (1 + 9T (5 1 +m).
It follows from this that 3%
@l = (x + #)m,
but it is rather a lopg jump so we shall come to it in smaller
steps.  Since m iglaby positive integer, put
Ko

\\"’ m-41=r

etc,, etc.

Then O\ me=r—1,
and wp,}iﬁxr; (r +2) flxr — 1) =f (20
01-:..\‘;;‘\"’ Sl =f{x,r— 1)

N {1 + x)
o\ gmcc this is a perfectly general formula, we may say that
\\ P Y E ¥

:"\’:" _M ._-I_(’_"_f‘_l_)_z X — 1 — 1) = {xr — 2),
\M\z“’ (I +.‘¥')2_- (I+x) f() ) f( S 2)

The process can be continuad, giving

* To make thia entirely complets and convincing it should be roved for the
general term in each case.” This can be done but is & rather lengthy business. 'The
reader should be sble to do it for himaelf,
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.(J;(ifi)_s =f(xr—3)

and 50 on, up to 7 times, which will lead to

]:("'_:”) = flxr —r) =f(x0)

(0 =
But Sflxo)=1. Oy
'S )\
Therefore Sler) =, \ 7
(l "i_ x),- : ) (‘.“:
so that O
(2 =flar) =1 4 012 o'
=Flxr) = TN
N o wﬁ\é,cgnaulibrary.org.in
— Dglx
1r _11)("\ 22)x etc., etc.,

3:‘ s’:

which is what we set out to prove. _Ihe symbol m has got
changed on the way, but that doesn’t ‘matter.

Hm=r5and x = 2, the sum\of the series is therefore
(14 20)5 = g5 — 243, a resultdwhich has already been
demonstrated ahove, P ]
. Somuch for positive integral values of m ; but the series
Is not inherently i 'ta&.i?n the values that m may take, so
It wil] be nccessarr;io carry the investigation one stage
further and find what the series means when m is negative
or fractional, &5 o
. It bas alre 3’been shown that in such cases the series is
Infinite, and{that it is convergent when x is less than 1
pomerically which condition will be assumed in all that
follows, £\

Without assuming anything at all about # and o, take
E}{?"f}\ro binomial series

f(x,u) =1 4 ux + u{u ;:—)xs.-}—
uu — 1)(8 = 22 o e
it 21
i45
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Flxpy =14+ ___"_‘ix‘_ﬁ*_

3

multiply them together, and arrange the product. i\
ascending powers of x.  As before, the operation should
really be carried out for the general term, but this skomuld
take rather 0o much of our limited space. Tajing any

finite nurober of terms, the reader will have ng dxfﬁcultv

in showing that the product can be put in the form
P fiss K7
=1 4 (u o B RDE O

www . dbraulibrary.org.m

(« +o)lu 0 — 1!}(1; -+~ ZJ\ “2)xd
3 :s "
—f(x;ﬂ +4).

This is the important stép, and the full interpretation of the

series is implicit in tlus equation, for we can use it to show
that

etc., ete.

S tem) = (1 4 5m

even wherx‘r it \is negative or fractional, provided x is less

than 1 n ically.

311]3110&6 first thatu is a posmve integer, and that v 3 a
negatwe Integer equal to » in magritude (thatis, 2 = — ).
ThQn, since
:"\f Smu) = (1 + x)%,

\w

"\t being a positive integer, and since it has been shown that

S o) f (20} = f (xu + 0)

for any values of « and v, then if » = — u,

Jlaw) fmp) = (v +x)% f (2, —u)
=f (%8 +v) = f(xu — u) = f(x,0).

But Fla0) =
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Therefore (14 f{x, —u)y=1,
or S =) =11 = (12

which establishes the result for a negative value of m.
From the general result

S () f (%0} = f (38 + 0) Q
it is easy to show {(as on p. 57) that f’\““\’
.”\.
{f (2} }¢ = f{x,ug), . \J

. roa - l\.‘
where 4 has any value, and ¢ is a positive integer. &

Since « can have any value, let it be a fraction p;’(,’ 0 that
ug is 2 positive integer p.  Then the equation.* O
' 1 (x) ¥ = f (xuq) ww@bl‘aulibrary,org,jn
becomes Ke,)

f (mpla)} =1 (n8) = fah 9.
Feplg) = (x + 204

which proves the result for a fedigtional index.

To sum up, N\ .
mim — 1} +

(1 +x)m =1 + m(\e_ T

‘ \\\_rfz(m - ;) (;31-—: 2)x* -+ etc., etc.,
+m_(m_““)’(?_" ~2) ... (m—nto)tt
N n—1) !

for all valuks of x if m is a positive integer, and for all values
of m, %‘g\:ided ¥ is less thalil I numerifally. This is known
23, the Binomial Theorem., .
s obvious that there are many useful and 1mp0rtan;
\\ﬁppli_cations for this result. Take for instance the genera
solution of 5 quadratic equation —

BE a4
b VI

2a

Therefore

which can be putin the form 147
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__—b qacy 3
RS i

Now if 4ac is less than 4% pumerically, so that 5%/4ac 1s

less than 1 numerically, putting x = — 4ac/b? and m =}
in the Binomial expansion gives
4ac )%
0—?) A
¢\
2ac 2a%? 4a%? 1oalct N\
I - SR T T T \ o
etc., et‘cﬁ,’ad inf.,
so that the solutions are R4
& b ¢ ac? 2a%8 Y
gm= — - 4+ = F ; F oy T oo RN
www.dbraulibt®ry crgan b & b AN b

\\ etc., ctc., od wnf.

In terms of actual numerical values this series solut‘iorl
may not be any simpler for computation than the original
form of solution, but since thedttecessive terms will decrease
in magnitude more or less.fapidly according to the magni-
tude of 4as/b%, this form efistatement facilitates a process of
approximation, and if 4at/b? is very small compared with
1, so that powers gbove the second can be neglected, it
gives a very closely)approximate solution in a very simple
form. X\

Again, the\ binominal theorem is very useful for the
approximaye talculation of certain numerical expressions.
The ntl“s66t of a number, for instance, can be obtained
by afgeiieral method which can best be explained by 2

sﬂiﬁg}f'iﬂustration. Find to four places of decimals the

root of 3131, First find by guessing and trial the

wnearest whole number—in this case it is 5, for 5° = 3125
% Then

_ 3181 == 5° -+ 6 =5 (1 - 6/3125).
Notice as a further simplification that

6fg125 = 6{5% =6 x 25/10° =6 x gef10%.

"Then V3131 = 5[1 + (6 X 32 X 10~9)]}
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~5
:541_%6_><325_><_1_9_

2 2 —10
— 4:2<_§ K327 X 10 7 -+ ete., ctC.}

25 X 2
= 5{1 + -00038) A
taking the first two terms only (a little consideration will

show that the third term will not affect the fourth place of (-
decimals).  Finally _ O
/9131 = 5.001Q. A\
_Certain power calculations can be very copsiddérably
simplified in  similar manner, for example (3@3‘}:{“\.' This

tanbe put in the form www,dl:;r.‘aulibl'ary.oran
(3.03)10 == g10(1 + 10720
=31 + (10 X 107%) + (45 X 10j¥):\"
+ {120 X 107%) —f—:(:%lﬁ % 1078} etc., etc.]
= g% X 1.104620%
= 59040 X LXo462
toreect to five figures. The' last muttiplication will be a

rather long business, buf the whole calculation will be very
much shorter than t‘}rc.\direct working out of the originat

¥

eXpression, \\

68.YIBE EXPONENTIAL SERIES

Apart ol /these immediate and practical uses, the
Blnornial}ﬁhéorem plays a large part in the development
of other Gmportant series. This is illustrated in the
gﬁpa ntial Scries, of which mention has becn made

€ .

,\"Il' has been shown that the series of numbers

x2 3 xd 5 Pl
5 X, 51’?,4_” 5_' [P (ﬂ__ I) )
k?(’“'n as the Exponential Series, is convergent for all valgeils
o % The series is really a special case of the Binomia
“ries, and can be derived in this way.

I
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(I +i)m= - n?_:: L ra{nx — 1}

2l n2
+ ?zx_(nx_-;%gm —2) -+ ete., etc.
) e\
=14x -|—ﬁ_2#’ﬂ AL
- x_(x__ll_{n%# __Q'J{R) -+ ete,, etc, ;\:} \

Now by sufficiently increasing z, the series on shie, right can
be made to differ by as little as we please frofrithe series ;
;x| &3 N
I+ x4 ot —';-?- + et etcyy ad .
www dBragiibraryoodg,inthis series is thet xl:i}rlit of the original
series when # tends to infinity, anti(we have

I Iy\m i P P i
o (1 +£) =1 4-x 'j_‘,fé"_! 'f's—'-! +E.I' .-
e\ ;
! '(?”T_TFO}! .+ . . etc, ete., ad inf.

(This, by the way, dhough it is given in this form in some
texthooks, cannogbe regarded as a rigid proof. The limit
of the sum f{ arl infinite number of guantities is nof
necessarily the ‘sgmc as the sum of their limits, as the above
proof assurmes.  However, it serves to demonstrate the
connection ) between the Binomial and the Exponential
Series, (A completely rigid proof would take rather more
qucq:a’ian can be allowed to it.)

A’ important special case of this series is that in which
&= 1. The series then becomes

& i, By I I I
"'\{..\f a.'—jcx)(l +;g) =1 -J’_I + §‘T+3_!+Z1'! +
NV ;

+- '(E"—'-_I)_l -+ . etc, ete., ad inf.

The number represented by the series on the right-hand
side plays a very large part in physics, particularly in
electricity, It is called €, and its magnitude to ten places
'.[50
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of decimals is 27182818285, Readers have already made
the acquaintance of this number in the section dealing with
logarithms, wherc it was introduced as the base of the
system of Nuperian or Natural Logarithms. It was
remarked a2t the time that nothing could seem more
arbitrary and unnatural than this awkward looking
number, but we sce mow that there is at least nothing .
arbitrary about it, and a little further consideration will ,
show that there is very good reason for calling it natural %~
The reason is that it symbolises a process of growth sor*
change which is of very frequent occurrence in natural
phenomena. O
Consider, fur instance, what happens whefi\'a con-
denser of capucity ¢ is given a charge of ampuet Q, and
then allowed 1o discharge through a resi§i tbpagd ikpatRhoT 8- in
t Fig. 16, T'he charge on the positive plate of the con-
denser will flow away in the form of a’¢liytent through the
Tesistance, and the magnitude of thi{ gurrent will depend
on the potential of the condenser, that is, on the charge on
the condenser. Thus the condgnser discharges at a rate
which is proportional to the chéivge, or, in other words, the
tharge disappears at a rate which is proportional to itself.
18 means that the rate-of discharge will not be constant
for any finitc interval of \time, but decreases continually as
the charge leaks ay a{ "The determination of the charge
left on the condensc;}ftcr any given interval thus appears to
b'.: 2 very difficylt’matter. In fact, it cannot be solved
directly withgufChe aid of the Differential Calculus. The
following method can be made to give the right answer,
hOWc}r e, aud is a very good example of the part played
¥ € inallsuch phenomena.
‘e will assumic that the rate of discharge varies not con-
N tinuously, but by sudden steps.
That is, we will assume that t_he
condenser discharges for an 1in-
terval of time &t at 'thc rate
corresponding to the initial con-
ditions, and then for a second
interval 8¢ it discharges at the
rate corresponding to the
151
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conditions at the end of the frst interval, and so on.
The initial potential of the condenser is Q,/C, and
the initial current is therefore this potential divided
by the resistance, that is, Q,/CR. Since a current is the
rate of flow of electricity, the quantity of electricity
that leaves the condenser at this rate in the time B IS\
Qo81/CR, and the charge left on the condenser at the ebd

of the first interval (call it Q) is Qo — Q0/CR, thaCl,

Qy=0Q.—05CR = Qo — St/CR). )
Similarly, Q,, being the charge at the begigninf of the
second interval, the charge at the end of the §8sond interval

will be ~N
Qo= 0Q,(1 —8CR) = Q oz %:}i;’C‘R)z
and so on.  After n such intervals the bitarge will be

dbraulibrary.crg.in ; A\
www. dbrau ¥ Q,, = Q,o([ _ Sﬁgy{)ﬂ.

*

N

N
h
\ }

Assuming that we want to detdéfiine the charge after an
Interval ¢ we can consider thaf this interval is divided up
Into 7 smaller intervals 8¢, that is, ¢ = n8t, and writing (), for
this remaining charge W
Q=00 (1 SBUCR) = Qofs — tfaCR)™
But this is admittediy an approximate solution, The rate
of discharge doeg'nibt remain constant during the interval
6t, however %gct ‘that interval may be ; but it is clear that
the shorter theinterval, the more correct the solution will
be. That i3, for a given interval ¢, the larger » becomes,
the mozre nearly correct will he the solution. In fact the
approximation can be made as close as we please by
sufficiently Increasing #, and the exact solution is therefore
ith'mlt of the above expression when » tends to infinity,
{ is,
: Q=Qo & (1 —taCR),
H =00
This can also be written

Q.= Q. . {t.w {(xt — t/ﬂCR)"“‘m"‘}""",

—

and, writing 1/m for — ¢ CR s . il tend
to infinity togt{ ther), /aCR (notice that m and n will ten
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Q= Qo & {(1 + tfmm}—os
e 00
— Q,i] E—x,f.cx.

The reader should put in some actual values in order to
get some idea of the scale of the phenomenon. How long
will it take the condenser to discharge compietely, that i,
for what valuc of ¢ is Q, ¢=9°% zero ? The answer is that ¢
there is no finite value for ¢ which makes Qs zero. The(}
condenser is never discharged. Think of it ! All the
condensers in the world are still trying to get rid of their
last charge and not succeeding. Actually, of coursgy the
charge falls to an immeasurably small quantity dn‘a very
short time, fractions of a second in general; apd can be _
made smaller than any given quantitywhybrnakbegry.org.in
sufficiently large, Mathematically Spcé}ﬁng, complete
discharge of the condenser is represented .y
b Q.= It Q,eN =o.

e oo t—> o0 g W™
Nature abounds in instances similar to the above, where
3 quantity changes at a rate which is proportional to the
magnitude of the quantity. wn all such cases e, generally
with a negative index, will“appear in the mathematical
Tepresentation of the pfoedss. In fact e turns up nearly
as often as «, which {snsaying a good deal.

N
D

69. ELEMENTARY ALGEBRA; CONCLUSIONS

So much by’ way of an introduction to Algebra (for
fven at the {risk of discouraging the reader it is well to
Terund hi@)that it is only a bucketful out of the ocean).

Onevfinal word of advice will not be out of place before
e legve’ this part of the subject and proceed on the next
Stage\of the Journey towards the calculus. Mathematics,

oSk manking, s a mystic duality of body and soul.
\\ {Mzcbra is the soul of arithmetic. Its intimate association
¥ith, and, in a certain sense, dependence upon, concrete
reality should never be forgotten. A comprehensible
Mumerical or physical interpretation is the ultimate sanc-
12 of any algebraical operation, and only within the
limits of this sanction can the wonderful labour and thought-
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N

saving devices of algebraic symbelism be emploved with
perfect confidence, Even practised mathematicians are
liable to be puiled up short by the sudden matcrialisation
ofa grinning absurdity out of a mist of ill-delined syimbols,
as when, for instance, to quete an example that onee
came 1o the writer’s notice, a few pages of apparently
unimpeachable analysis led to the conclusion that, the
height of the Heaviside layer could be expressed: a8 2
complex number. As the Duchess would have($aid " to
Alice, the moral of that is—take care of your\ gfounds,
and the sense will take care of itself. '..\:\“3

\wa_d braulibrary.org.in
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Examples &

1. Expand (o the first five terms

{a]) 1/{x + x}
(D) I{'.\u - x")"
() (1= e )
2. Show that the nth terms of (1 — x)~*and (1 + x)2-2 \
are equal. O\’

,;‘

3. Find /719 to four pla.ccs of decimals by the Bincmial ;\
Theorenm.  (Note 3% = 729.)

\»

4. Find J /108 to Tour places of decimals by the Bmo 1
Theorern, (Note 27 = 128.)

20 |
5. Show that WWW d]a\}u ibrary.org.in

4 =1 + xloga + ‘rz{{igé)_a 3(Jggf_a)¢3\>./
' g |
,«c cZ, etc., ad inf.
8. Show that \
Rl PRI
2 =1+ 2'+4'T6~L“*"8fetc etc., ad inf.
JL - e x 3 \x%

x?
——-2——=x+-§—1-§ T—[— |ctc etc., ad inf.
3 7

7. Show that %\.'
12 45 8 ;
=2 AN+ g1+ et ete. ad inf.

£
AN
L)
x' N/
'S )
\“/
O
AN\
N
@\ 4
\/
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Chapter 5

GEOMETRY AND TRIGONOMETRY

70, THE STRAIGHT LINE

EOMETRY is the study of space and spatial relat;mtl};
ships. As usually taught in schools (ot rfl}h§ ;ﬁe
avoid possible injustice, as 1t was taugb{ \L srom

writer*) nothing could seem more acadenuc or I‘:Ci:ll‘?tﬂ o
real life ; but in fact no other branch of mathgghatics pOfrc
a larger part in a wider range of humag, defreities. don
has only to think of surveying, architechure, namgc‘la o
wrw dbrastBig ' so on to realise this.  ‘The coils anﬁ c >
densers and aerials of radio are the,nigél’v'es solid con gUfses
tions in space and their funcgiening is in manYt %?Dm
determined by their “ geometpy%’ Moreover, apar srical
these direct and obvious embodiments of geome '(;cas
elements, there is so closecaiConnection between t%ne lomc
of pure algebra and thise of pure geometry that Snerlt
knowledge of the latteftis an essential part of the equip il
of anyone who wishes to apply these precise and beau
methods of thinking to practical problems. biect
For the saké of brevity and compactness, 'LhC su ﬁ‘
will be devélo\acd in terms of the ““ vector ™ ideas Wil ”
have proyed of such immense value in their application
the analysis of radio and electrical problems. decd
Géometry has the whole of space for its domain. Irfi e
a3 afpabstract subject it is not even limited to space © cope
%dimcnSiOns ; but two dimensions will suffice for the sI
O\Of this book,  We shall consider plane relationships o i.xt
A% The simplest geometrical clement is a point, and ’LhCI_I;m >
L) simplest a straight line. But what is a straight I e
\ ¥ Euclid defined 1t, over two thousand years ago, ;lf avs
shortest distance between two points. This has alW Yﬁ
seemed to the writer to be more like a deduction than a
definition, and it certainly is not easy to use as the fount

* The reviser’s experience was much happicr,
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tion of a logical system ; but it is also not easy to find a
better one,  However, let us think of the practical defini-
tions which are used by many persons every day. There
are several of them., When a surveyer measures an angle
with a theodolite, he is virtually defining a straight line as
the path of a ray of light. A builder assumes that a plumb-
line is a straight line, To a draughtsman, a straight line
8 a line drawn against a siraight-edge—and in this
combination we can find a good working definition, for
the line can be used to test the straightness of the straight- _
edge and therefore of itsclf Firstly the edge can be slid{_
along the line in both directions, If the two can be made
to fit for any amount of sliding, the edge is either straight
or has uniform curvature. But if it can also be made to _
fit in the same way when the straight-edge i ¢l¥gel beery org in
so that its under’ surface is now uppermost,\thien there
cannot he any curvature, uniform or othpm\fse; and the
edge and line ‘are both straight. N\
Ihis appears to be a rather crude>definition, and the
writer felt very nervous about putting ¢ forward ; but he
was reassured by finding that &real mathematician,
Henti Poincaré, writes in his %Science and Method ”
that the shortest path definition ¥ does not satisfy me at
al”, and then goes on to. give, at least for purposes of
ucation, what is virtually the same as the above definition,
adding that it is in effeét efining a straight line as an axis
of rotation. N\
This may secmgtQ be making a great and unnecessary
fuss about a simpl# idea that anyone can understand without
gven thinking ahstt it, but the plain fact is that a stra;l,g!nt
line 18 not byany means a simple idea, as © number ” is,
and it is §5) Well to realise this from the start. This is
partu?glé}y“ necessary for these whose desire for under-
standing: may carry them to the region of ¢ relativity ™
oL e¥eh beyond,
) %Y. ANGLES
A single geometrical straight line, defined as z;bovc,
wt assumed to be unlimited in extent, has no describable
Sharacteristics except straightness and extension ; but two
Such lines which intersect, that is, have one point in
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common, present much more food for thought. To start
with, they define a plane, and in all that follows this
plane will be represented by the plane of the paper.
Further, each has direction relative to the other,
This relative direction is called the angle between: the
lines, and is convenicnily described by means of letters 1
either of the ways illustrated in Fig. 17. The angle
marked with a star will be called the angle 408 (written
AGBY or 8. Where a single symbol is used (genc\raﬁl}’ a
Greek letter) it must be inscribed in the angle ag shéwn.
It is important to realise at the outset that“he letter
notation of grometry has a dual charactef/yIn the first
place it is used simply to identify cegtaln clements for
reference. In the second, it functibiigvas an algebraic
svIn ing for a number which measures in some
Www‘dg%?zcﬂgircf R ;ar?ggf the magnitude oPiﬁ%element ‘Thus the
) ~of Fig. 17 serves both
A A\ vio identify the angle 4GB
\ .7 and to specily its amount,
or magnitude. Fow this
amount is to be measured
will be considered later.
Apart from any system
g  ofmeasurement, an angle
'\ﬁ-mjy can be thought of as an
. amount of turning, Thus
the line O has to be turned through an angle § about O
as piyat’in order to give it the same direction as 04. The
two @liernative directions of rotation {anti-clockwise and
clockwise) suggest at once a sign distinction. It is almost
Numversally agreed to consider an anti-clockwise rotation
Lhas describing 2 positive angle (as in Fig. 17) and a clockwise
0% rotation as describing a negative angle. This conforms
O with the algebraic significance of the negative sign, for

\‘z

a

8+ (—8) = 0, algebraically and geometrically.

It is obvious that the amount of turning represented by
g + 8', that is, the amount of turning that brings OF into
line with OB’, BB’ being a straight fine, is a constant for
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all such pairs of lines. The angles 8 and 8’ are called
“ complementary > each being called the complement of
the other, i follows that

640 =8 + ¢,

G = ¢.
The angles ¢ and 4, 6" and ¢ are called opposite angles.
If the line 0.1 is rotated about Q in a positive direction, O\
# will increasc and ' decrease, and since the sum of the ) \ N
two Is constant a condition will be reached when « M
=6’ (Fig. 18). N
The line 04 is then said to be perpendicular to BB Jand
ﬁlg{‘ingle & (or #') is called a ** right angle ™. o AN\
e right angle is the basis of one 8Ys , bﬁt}?’% N org.in -
angles. Itis divided into go equal rotaticfi?sfw clro th?gl% 8
B called a degree. A degree is further subAdivided into
60 minutes and a minute into 6o secondg=\\In this system
4 compiete rrtation is four right anglegvor 360 degrees,
and a half rotation 180 degrees. Jhus complementary
angles are such that N
848" = 1807, A
and in practice the N
definition is ecxrended A
S0 25 to inciude the {”,\
Case in which eithe(\" e
angle is greater than
180°, the other being / ) 8
correspondinglyphfega-
Ve, .o\ Nos ’
At this peidt it may
Wwell be asked ** Why
: 11;1 thﬁg{%émc of all that
arbiitary and in-
W{\a;‘énient,y pick on 4
369 as the number of Fig. 18
"8rees in a complete revolution ? Hogben says that the
abylonians are probably to blame for this, They
OUBht that the solar year was 360 days. Later on
another systemn for the measurement of angles will be
159
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described. ‘This alternative system, though numerically
mot much more convenient than the degree system, has a
more logical basis. It cannot be fully explainad, however,
until we have some understanding of the great principle of
geometrical similarity on which it is based. Q

72. Tur TRIANGLE O\
_ Suppose now that a third line is introducedy igto~our
infinite plane (see Fig. 1g9). Each of the thrce Jines “_rill
then acquire the additional characteristié, of rclative
Positton as well as relative direction. This iKnot immediately

Fig. 19

TCIev_ant! *l'ht is introduced to emphasise the essentially
telative,oharacter of position, and the fact that two other
lines>are required to specify it.

T Ahe’ figure bounded by these three coplanar straight
FMes 15 cailed a plane triangle. The sides can be described

N\JY means of the letter pairs AB, BC, GA, or more con-

veniently by the single letters shown in the figure.
hNotlcc first that if the line A4/¢* is turned about 4
through the angle a in the direction shown, then about B
through the angle 8 and then about { through the angle
> It will make a hatf revolution, the points 4° and G’
reversing their position with respect to B. Therefore

o+ 84 9 =180°
In words, the sum of the internal Y i i
. i two
right angles. Further, since ogles of a triangle is
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y' 4y =180%
y' =a+§

and similarly for the other pairs of internal angles. The
angles a’, 8" and v’ arc called the external angles of the
triangle,

73, PARALLELS

Suppose the line BC (Fig. 1g) is rotated in a positiyé

direction about B, The point € will move along 4 'CQ@@
shown in Fig. 20. K7,
N/
2 . \:"\\\
- \ 4

/8

Then

Ja’s_}_ 181 + Y= 1800

o \
7y

"\“;&'—{—,82 + v
S oat+Bs+ v

180°
180°

I

I

$
and so ops &

But ’\s.;
.~\\ A
RN y1 =y + C1BG,.
Therefore
\ . y1>> ¥ar
Similarly
Y2 > Vs

and so. Thus, as C moves away from 4, the corresponding
¥ gets smaller and smaller and smaller. In faci, by
turning the line so that C continues to move away from 4,

6 161
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y can be made to approximate to o within cugry standard
(see Section 61). Thus, in the limir

a—i—ﬁ:IBOo,

and the lines AC and BC are said 1o be parullel.  Thisd
what is meant by saying that parallel lincs meet at infinfty,

A Further, sincg€™\*
Y/ ){ o -+ 8 =4B8c°
1 N/

N 7 and R
3" Z5N\5 = 180°

A then

# '\"
\ 2

= q.

A

58 ATC rously
dbraulibr g l:l \\"'_Tg:?;tt;l E(Cfagl;::s?nps},
e %g./} ' Y true for any pair of
B AN parallel lines and 2

Fig. 2| D third cuiting through

oD them boith. The

angular equalities are asiindicated in Fic. 21,

74. goNéEUENCE OF TRIANGIES

By the complete congruence of geometrical figures is meant
the COIlgI‘u.CI,lC?}l magnitude of ai] the corresponding ele-
ments, sidey, angles, etc, A practical criterion ol congruence
is that theonk figure, placed on top of the other, will coincide
with ipg@t‘every point,

The'two triangles ABC and DEF of ¥ig. 22 are equal in
eyéryrespect if
7\

N 4B =DE,  4Bc-. pEF,

K BC =EF,  BCA — EFD,

O CA = FD, and C4B = FbE,
N but obviously not alt these conditions are necessaly-

For instance, if two pairs of angles arc given equal, the
femaining pair must also he equal (sce Scction 72)-
What are the minimum conditions that will ensure com*
Plete equality ? There are three separate combinationt
of such conditions,
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t2; Two sides and the included angle, that is,

4B — DE,
AC = EF,
ABC = DEF.
{b} Onesideand twoangles notopposite tothisside, thatis, N\
AC = DF. B A\ ¢
CAB = FDE, R \J)
BCA = EFD. D
and thercfure also ABC = DEF. .‘,." N
(¢) Three sides, that is, '\g,“
AB = DE, N\ .m}
BC = EF, )
Cd = FD, \\rwg&Qb}"aulibl'ary.ot'g.in
The first two are \ & B
very easily proved O

by considering the
second friangle to
be, as it were, lifted
and placed down
on the first. The
proofs are toosimple 4 <

to  justify  giving {\ £
space to them. The ¢\J

third  cannot 132\\
proved in this wayy
and will be deférred

till later. x:\'“.

2N\

A\ 7 d

\ - Fig. 22

QO 75. GEOMETRICAL SIMILARITY
) The above discussion of equality brings us to one of
the most practically useful and Important ideas in the whole
of geometry, the idea of geometrical smuIarltY: It is
probably not generally realisc;d that the “fhole science of
trigonometry, with its applications to surveying, navigation,
and astronomy, is based on this one principle. The xdza
103
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is concerned with the relation between equiangzular
triangles, that is, triangles of which the corresponding
angles are egual. Such triangles are not necessarily equal
in every respect, as Fig. 23 will show. There is, however,
a definite metrical relation between such triangles, the
relation being ) \

4
d

b«
=, =7 "\:\.
The progly'is™ not
easy, but an outline
of it will be given
ord account of i
importance in  all
that ollows.
7 Consider first the
diagram of Fig. 24,
in which 4B is
L parallel to ¢D and
Fig 23 09 ACto BD, Tetollows
™ from the properties
of parallels that theangles marked with the same Greek
letter are equal. The triangles ABC and DBC, having the
side BG in commanand these angles equal, are equal in every
respect (see ﬁec}ion 74). Therefore
. N 4B = CD and AC = BD.
This is Ahe first step.
Now fock at Fig, 55 AA \g
whare, B is the middle
péint” of AC, BD

applying the result just
proved it is easy to
show that 4D = DE.
This result can be ex-
tended as shown in
Fig. 26. 1If the line 4B is divided into » equal parts by
the parallels to BC, then AC will also be divided into »

equal parts or segments . Returning now 1o ¥ig.
164
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23, the smaller of the two triangles can be drawn
inside the other, as shown in Fig. 27, the line BC being
parallel to £F, in virtue of the angular equalities assumed.
If the ratio of AC to AF is expressed in its lowest terms as
the fraction m/r, AF can be divided into n equal scgments
by lines parallel to, and including, BC. The line 4G will be
divided into n equal segments by 7 of these lines. 1t
follows from the preceding that AB and AE will be similarly
divided by these parallels, so that

AB m  AC

AE = 77 AF N

Similarly, by redrawing the smaller triangle §p<t%;ét B
coincides with E, it could be shown that )

that is,

I.t follows from the proper-
tes of fractions already
proved that
a _f_f d b e A
b=, and =l
both of which cc}x@ﬁfies
are included in the form
arb.e =@ f
O\ This means that the.
§ 24" relative magnitudes of
the sides of a triangle
NS depend only on the
\uf shape of the triangle,
and will be the same
for all triangles having
iwo angles of the one
L N A equal to the two cor-
Fig, 26 responding angles of the
165
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other. That is the important conclusion to remember.
Two triangles rclated in this way are said lo be similar,
‘The trigonometrical ratios which will now be described
are no more than an expression of this similarity in the
particular case of right-angled triangles. A\

76. Tny TRIGONOMETRICAT. RATIOS A o

Consider the right-angled triangle shown in Fig, “e8.

Any other right-angled triangle containing the angle of ¢

will be of the same shape as this; Therefore tha relative

magnitude of the sides, that is, e/, ¢fb, andrgle, and the

reciprocals of these ratios or numbers, will depend only

on 8. They can thercfore be considered a9 functions of 8

and tabulated for various values of €\ Special names,
tabulated below, are given to these,nﬁmbers.

www.dbraulibrary.org.in '\ ¥

\ | ' ;
Ratio } Name . Abbreviations |
_ D i | o -
heigh;@u&potcnuse _ sine | sin
base/A¥potenuse i cosine cos
];Qig}it}base ! tangent i tan
Jhypotenuse/height cosecant ; cosec
3 *hypoienuse/base i sccant i s6C
~\J base/height - cotangent | cot

\ )

Apart from the reciprocal relationship, it is clear that
these ratios, being functions of §, must also be funclions
of one another, and will therefore possess certain inter-
relationships, One s immediately  obvious from their
definition, for
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sin height ; base height —

cos  hypotenuse/hypotenuse —  base

Another important relationship will be proved later.
In practice the above definitions of the trigonometrical
ratios are extended,
as shown in [ig, 29, £
to cover any value
of & up to four right
angles. "The positive
angle & 15 the
amount  of  anti-
clockwize  rotation
of AC from AX, and
sin @ is BC{AC, cte.,
ete.  Similarly for 4 237>
the remaining Fjgﬁ}&v
quadrants, O\
Without further Ly
qualifications, how- ONY |
ever, an angle such o ' ,
as @', where 4B = N ¢
4B and BC=B'C" A [N ] -~
m  magnitude, : B
wouldhave the samel ) ,’X
ratios as f, 'l‘hék a 4
ambiguityisavelded
by asign cop¥ention
relating to{the con-
stituent,,%n s of the
ration \The sloping -
lingdswonsidered to ¥
have no sign at all Fig. 29 .
L (Dut all other lines
) e considered to be measured away from the cenire 4
and are taken as positive in the directions AX and AY
and negative in the directions AX’ and 4Y’. Thus
(Fig. 30}, if the lines have the magnitudes shown by
the small letters, BC and ED are interpreted as the
number ¢, BG and EF as the number — g, and so on.
16y

X

-\
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This convention results in the following signs for the ratios
in the various quadrants ;—

sin + +
cos — : -+ N\
tan — | -+

| L A o
) i AW,
s1n - ! Fo \
cos | — W™
tan ; -l ' N

The table need not be memorised, asit\s casier to apply
the sign convention direct in any givemn\case,

Remembering that a negative angle is a rotation in a

"w“"d(hfc?éﬁr%sacrgi?éghon, it is easy to sek that
sin @ = —pin — ),
cos § = 4 ¢os { — @),

and therefore &N
tan 852 —~ tan { — §).

Further, there will*® be certain simple relationships
between the ratid, of angles that differ by positive or
negative muItiPlgzg of a right angle. ¥or instance,

\sip"f} = cos {go° — @),
AN\ Cosf = sin (go° — ),
;7 sin 8 = — cos (go® 4 9), ctc,, etc.

Thess, 2gain, need not be mermorised, as it is much easier
t?'(gfraw the appropriate lines in a quadrant diagram in any
LBiven case.
" Given that

™
S

A sin # == g,

) 4

\ W

Q

8 may be described as the angle having the sine n. This
is written, conventionally

8 = sin—! p.
It should be noticed that whereas sin @ Is a single-valued
function of 8, that is, given 6 there is only one value for its

sine, sin~1n on the other hand is many valued, has in fact
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an infinity of values, for if # be the smallest angle having
the given sine, # 4 (r X 360°), r being any integer, will all
have thc same sine,
Similarly for the other * inverse ” functions.

There is no need
to illustrate the sine
and cosine of an
angle graphically,
for these curves will
already be familiar
to all students of
electricity in con-
nection with wave
forms of alternating
currents, Before
leaving this part of
the subject, how-
£ver, some impor-
tant special cases
should be noted.

X

So will (180° — 8) + 5 x 360°,

Y
B, N
o _ ’,f’ | 28N
& B "‘“\\ fa) C N\
a T a %
Gy 8, N
! I | o\ ¥4
£ \ \R B
a ; |
b ,." b N
F , W\\’\:{.{E}’aull TAry.org.in
'\ &
7
€2
"’,Figf?ﬂ

Referring to Fig. 28,
sin 8 = afb, ~\¢os § = c/b.
Now as ¢ tends to zero, #tends to equality with ¢, and a
tends to zero, so that O

sin g = g,
Simi.larly S

s§n go"o——. r‘\
sin 180 ? o

~C
.th' TrE CIrCUL

a ]
<N
RN
ay
any
O

®so =1, tan 6 = 0.

“ cos go° =0, tan go° = o9,
cos 180° = — 1, tan iBo® =o,
etc., etc,

AR MRASURE oOF ANGLES

Artasosceles triangle is one having two sides equal. 1t is
LS3873t0 show from the results of Section 74 that the angles
OPposite these sides will be equal, and thercfore that all

ch triangles with a given angle included between the
qual sides will be similar. # such triangles of equal size
and with vertical angle 860°/2 can obviously be combined
to a figure such as that shown in Fig. 31.  Such a figure
18 called a regular n-sided polygon (that illustrated is an
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octagon). From the preceding discussion of similarity it
follows that for any given number of sides 1 the ratio bfs,
and therefore nbfs is constant, that is, independent of the
size of the figure, that I,
nbls = ky,
where £: depends only on n,
. Now by sufficiently increasing
', n the figure can be made 1o
. differ by as litle as we( pléase
\ from a circle. A citgle s in
fact the limiting case when »
is made infumte,? nb then
becomes the fctphery or cir-
cumferenéd'el the circle, and s
. its radius\\"Thug the ratio
Fig. 51 cirg@mlerence, radins = ko

i

is constant for ali circles. The constant is the number
Go2831 . . . .. , usually .written 27, The symbol 27
is used both for shortnessdnd because = is what is called an
incommensurable number, that is, it cannot be comp1§t€lY
represented by any decimal. It follows that the ratio of
any given fraction of the circumference to the radius 18 also
constant for all@rcles. Thus in Fig. 32,

'\}Qﬁgﬁ}} ofarca, _length of arc a,

ry 7y

== constant for all circles,
thedmagnitude of the
comstant  depending

N

roily on the angle §.

,%The: ratio arcfrad. is
AN " therefore a  natural -
measure of the angle _

and is infact called the

circular measure of the
angle,  Unit angle on
this basis will be that
for which

arc/rad = 1 Fig. 32
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that is, the angle subtended by an arc formed by bending the
radius round the circumference.  This angle is called one
radian, and all angles in this system are expressed in terms
of radians. Thus an angle 1.9, that is, 1.4 radians, is one
subtended by an ave 1.9 times the radius in length.

The relaiion between the two sets of units is obvious, for

half the civcumference subtends 18c°, and the ratio of this

arc to the radius is as shown ahove, #,0r 314159 . . . . . . r A

30 that ¢\
1807 = 7 radians, S\

ST . b 3 N
which gives 57° 177 44+8” as 1 radian. This is a cum-
hersome sort of relationship, but conversion is very,gateiy
called for so it does not really matter. In gencralterms
we have U

w

& radians ( N
Avight angle is clearly #/2 radians, and th@\z{ﬁgles of a right-
angled triangle can therefore be ekpressed in circular
measurc as wf2, 6, and (=fe A P). Supplementary
angles (Section 71) are defined bys"
9 + 6‘!’:'“_—- .:H:
and in practice the definitibh is extended to the case in
which either of these angles is numerically greater than o,
the other being correspondingly negative.  In the familiar
group of symbols&8in” o=/t or sin wi, where o = znf
(f being the freqhiendy in eycles per sccond), wit is an angle
which increasesga#/the ratc w, or 2af, radians per second.
AN
\~ 78. AREA

Area, shamount of surface, is a fundamental conception
or lhin,} éf its own kind, which cannot be described in
terms ‘of anything clse, as one soon discovers hy trying to
dodso. Like all the fundamental physical quantities, its
“Nhagnitude can only be expressed in terms of itself, that is,
m terms of its own unit. Thus an area of ten units
means an arca having ten times as much surface as some
arex which it has been agreed to cali a unii area.

umanity has always been vitally concerned with area
and a multiplicity of practical units has arisen 1in

17t
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consequence, but they all have this feature in common—they
are expressed in terms of the amount of surface of a square
having a side of specified length, and for this reason they
nearly all bear names, such as square mile, square centi-
metre, etc., which indicate the length of the side of the
square. This choice of the unit shape is quite arbitrary—
a circle of specified radins would serve the same purpose, ™
but the accepted shape has the advantage that the arca of\a
rectangle of sides @ and & units of length Is arrived ag by the
simplest possible calculation on this systera. 1t @8)in fact
ab units of area, as can easily be dcmonstratpd}bjr 2 lirle
simple drawing, the unit of area being thcnst]ufire unit of
length, whatever that may be. This, hofvever, must not
be taken to mean that © area is leugth muldplied by

- dbr%ﬁ%%%;‘:ga statement which is completcly unintelligible

) 4

a3
.

..\".

N
\‘

; 1O r(l)nvenicntly abbreviated cxpression of the
ideas which have just been desckibed (compare this with
the discussion in Section 18 the physical aspect of
multiplication}. QO

{a) Area of a briangle ,.::3 )

Referring to Fjg.’j?;é, the area of the triangle ABC 18
$ah where a iS\tht length of the side BC. This can be

O demonstrated by

3 A f; c‘_omplt':tillg the rect-

\ P angles EBDA,

£ ) - ,/ ALFCD- It can .bC

O\ A /I shown, as in Secton

9,V o 74, that the Lines

NS s * divi hese
\ ) e AB, AC ch\»'rde i

Y T rectangles into €O

grucnt triangles,
33 whence the above

result follows.
(B) Area of a paralielogram

In a similar manner it can be shown that the area of the
parallelogram ABCG is a#, for the diagonal AC divides »*
nto two equal triangles,
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() Area of a circle

Referring to Fig. g1, the area of each of the isosceles
triangles into which the polygon is divided is §&4, so that
the area of the whole polygon is inbh. Il the number of
sides is increased indefinitely the figure becomes a cirele,
né becoming the circumference and % the radius. The . <\
area of the circle is therefore half the product of the length
of the circumference and that of the radius. As already .‘\>§
shown, the circumference is 27 times the radius, so that the{’:,\ ~
area of the circle is {(2nr)r, that s, =2 \ >

N’

<21>\ !
RV
N\

wwv;:@aul ibrary.org.in
2
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s W
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N\
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Lxamples X1

I.

Two angles of a triangle arc 17° and 83°. What is

the third ?

. An irregular pentagon is a five sided figure wit%

unequal sides. Prove that the sum of the intérda
angles is 540°, Whatwould it be for an n-sided fgpre?
¢\

. The sides a, b and ¢ of the triangle in Vigneg” are

4, 5 and g inches long respectively. Theside f of the
triangle DEF is 10 inches. How long ey and 4 7
Show that  cosec @ tan § = sec .ﬁ',w'\."”
sec # cot f = cosed\d.
sin 50° = 0-766,)
cos 50° :=’('}~\6@,,
the' values of  tardie?,

$eCI50°,

v:{'é;c?sec 507,

(Given that

N

«\ ¥ cof 50°,

I @
¢ sin 1307,
: =]
~ sin 140°,
¢\ a
LAN cos 220°,
o lan 320°,
<& tan — 50°,
sin 40°,
sec — 40°.

N

Find the value of {(sin 50°)2% 4 (cos 50°)2

(Note :
This 1s usually written sin? 50° 4 cos* 50°.)

. Taking 227 as a sufficiently close approximation for

w, find in !‘icgrces and minutes to the nearest minute
. .
f Iﬁ ra.d.[a.ﬂs;
} radians.
Find the magnitude in radians of 10°, 1260°.

. Find the \Trea of (i) a regular octagon with sides
!

Y,
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10 imches long, (it) a sector of a circle, radius 5 cm,
length of arc 10 cm,
g. If the unit of area were defined as the area of a circle
of unit radius, what would be the areas of the figures ~
in aacsti 2 .
in gaestion 87 ‘\\

Ok
Q
o
N4
N
&%,dbra ulibrary org.in
S
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70. VECTORS

The idea “ vector” is still hedged about with that
vague apprehension and dislike that attaches to the
unfamiliar, but one cannot get far in electrical thcory
nowadays without it. The trouble is that although the
essential idea itself is simple enough, its application callg
for new habits of thought, a new mental technique. That
means hard thinking, and hard thinking is the hardest)of
hard work. The technique, however, is worth allit‘costs
in that way, and there can be no doubt that {he vcctor
notation will play a large and increasingspert in the
mathematics and mathematical physics ©f/the future.
Even to-day it is unusual to find any anal¥sis'of alternating
cufrent circuit problems which is not expressed in terms of
the symbol ** 7, and that symbol, asythe following sections

WWW‘%{Féﬂwﬁf Wy 'Thiimately connep{éd with the vector idea,

though it is admittedly open toYadre than one interpreta-
tion (and a few misinterpretatiogs).

Tt was pointed out in Section*71 that a single straight line
in an infinite plane cannel\in any useful sensc of the word
be said to possess dirggtibn, for dircction is essentially a
relation to some othes straight line, We will therefore
take as the domaiphof our present thinking an infinite
plane and an infitite line in that plane. By the dircction
of any other{ine“in the plane will then be meant its direc-
tion relative this given line. For practical purposes,
the infinite.plane can be taken as that of the paper one is
writing\om, and the reference line can be any linc parallel
to the bottom edge of the paper.

Onrthis understanding any line in the plane of the paper
aill' have direction, and any finite segment of the line will

\ ‘have both magnitude and direction. The name  vector ”

0% is given to any line regarded in this way as a combination

of magnitude and direction. In general, any physical
quantity whatever which possesses both magnitude and
direction is called a vector quantity. Thus velocity,
force, acceleration, etc., are vector quantities, and as such
are capable of representation by means of vectors (not
necessarily co-planar in any given system). Most of the
quantities with which physics, and more particularly
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electricity is concerned are of B
this character, whence the
fundamental importance of a |
the vector idea and of its
technique.  As distinct from a a
vector quantity, any quantity A
which has magnitude only is
called a scalar quantity, or, A O\
shortly, a scalar. Density, Fig. 34 AN
temperature, energy, etc,, are g ™
examples, The distinction is well marked in the cagevof
weight and mass. The latter is a scalar, and the, foymer,
being the gravitational force associated with the miess, is a
vector, 4

For the.pr?s_entz however, we Sh{a]] nat be %ﬁéi{%c‘fﬁgg }Vltlt}l gin
vector quantities in general, but simply wr Stoplarat
line vectors defined as above. It should be noted that
10 mention is made of position in thendefinition. Position
plays a secondary part in vector ‘apdlysis, and where it
does enter into any given problem it will arise as a con-
sequence of the other two attributes or will be otherwise
specified.  In general any t¥o lines such as 4B, 4'B’, in
Fig. 84, which are equal/n magnitude and direction (the
latter being indicated.by* an arrow head as shown) are
vectorially identical¢ \Following a well-established typo-
graphical practice, a'line of length a will be printed in
bold face typc”('a:,} if it is being considered as a vector.

Alternativc]y:,’ﬁ will be taken to mean the line 4B
considered/as”a vector. The magritude of any given
vector @ @ill be indicated either by using the same letter
i ordingry type, or by [al.

ad
*

NS 80, THE ADDITION OF VECTORS

) A vector can be regarded as a displacement or step of
Specified amount and direction. The obvious inter-
Pretation of the addition of two vectors is the combination
of the two displacements as shown in Fig. 35, the sum, as
distinct from the process of addition, being the single
placement which has the same total effect as the two
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displacements made in suc-
cession, Thus the som  of
a and b is ¢. From the pro-
perties of a parallelogram it
follows that b - a, shown by
the dotted lines in Fig. 35,4
the same as @ + h, so thapsthe
process of addition of véotors
obeys the commutati(e) law,
which brings it ingaline with
the same processain érdinary
algebra, The{ extension of
the above, and of the commutative lawy o' the addition
of any number of vectors is obvious,
. - £,
ww v Abggu LA Prg Ry o o OI\IHT NEGATIVE SicN

As far as possible the symbolisht of vector algebra will
be made analogous to that Jof scalar algebra. Since
therefore aQY

at¥{—a =o
In scalar algebra, let 48 use the same form vectorially and

interpret { —a}, &t present undefined, to suit this con-
dition. If O

Fig. 35

7%

T at(—a) =,

then -—amz’t displacement which cancels the displaccment
8, thatusi/— a 15 2 vector of the same magnitude as a but
Oppgsite” to it in direction. The subtraction of vectors

thicn.bu_:qamcs an operation of essentially the same character
%\a:ddmon, for
2 S

a—b=a-+(—bn).
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The process is illastrated in Fig. 96, Notice that a + b
and & — b arc the diagonals of a parallelogram having
8 and b as sidces.

Sz, Toe MULTIPLICATION OF A VECTOR BY A NUMBER

By anuaiogy with the corresponding scalar operation

N
2-l-a-ta-+a--etc. ... .. .n%terms ¢\
. . . NS ©
will be wwrittcih @ X n, or more conveniently na. Thusza
is a vector of the same dircction as & but # times as langy

83. Tre IpEA oF OPERATOR aND OPERAND

The group aa can be regarded as symbolising’a definite
operation on the vector a, which in thiselation can be
called the * operand . If n is a HOSHEOrAWNmRFYGre-in
fraction, the operation consists of the@hultiplication of the
magnitude of a by » without changing its direction. If‘n
is a ncgative number or fractieh,.say, — m wherc m 1s
positive, then na rcpresents thé Semewhat more elaborate
operation of multiplying thelmagnitude of a by m and re-
versing its direction., Regarded in this way, the symbol
is called an  operatord® It is an essential feature of an
operator that its effeet,shall be independent of its operand,
that is, the relati@&'of na to a does not depend in any way
on & This ides 1\more than a mere pedantic claberation
of terminologgn)Other forms of operator, which play a
very large dpart in alternating current theory, will be
lntroducqgi;iﬁ later sections.

\\ 84. UNIT VECTORS

A hnit vector is a vector of unit length, It follows

foM Sections 82 and 83 above that any vector whatever

\gan be expressed in terms of a positive or negative number
and some unit vector. Thus the veetor a can be expressed
in the form qa,, where a, is the unit vector in the directzon
ofa. Thus ma, and na, are vectors of magnitudes m and »
and of the same or opposite direction according as m and n
are of the same or opposite sign. Notice that

ma, + nd, = (m =+ 2)a;.
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In all that follows the symbol » will be used for the unit
vector in the dircction of the bottom edge of the page from

left to right.

85. Tue Scarar PrRODUCT OF VECTORS

In the arithmetical sense of the term, the multiplication
of two vectors is not an intclligible process at all, buthexe
is a quantily which involves two vectors in a phgntier
similar to multiplication, and to this the name“5calar
product is given. It is defined in this way. <I'fje scalar

product of twogvettors & and

8 b is the scaldy™ quantity b
cos #, ¢ and E'being the mag-
nitudes the vectors and ¢
the anglé’between their posi-
tive\irections. It is wrnitten

a*b,)50 we have
S8 arbhe==abcosb.

. The character of this.ﬁﬁi’)d'uct will be made clear by an
mspection of Fig. 57.09f BP is drawn perpendicular to
04, then ~

ATV O
L*w-a ©os 9—»1‘0

Fig. 37

LA

£ »
\ g = cos 8,

. &
that is, \ OP = 0B cos @ = acos 6,
so that, ;" a'h = abcos 8 = 04-0P.

Thesgealar product is thus the product of the magnitude
\ﬁb\aﬁlvector and of the ** projection ’ of the other on it.
\Notice that a scalar product has sign as well as magni-

s\ tude, This is because cos § has sign. Thus the scalar
¢\ product of the vectors a and b shown in Fig. 38 will be a
\ \ negative qL}ant‘ity, for in this case ¢ is in the second quadrant

and its cosine is therefore negative.

Notice further that there is no question of extending this
notation to more than two vectors. @'b is a scalar
quantity, so there is no scalar product of (a*b}anda third
vector ¢.

This conception of scalar product may at first sight
180
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seem rather arbitrary, 8
but it has as a matter
of fact a very definite
physical significance.
To take one of the
many instanccs of its
physical  interpreta- T \ A >d O
tion, if & represents Fle———siO b )
the displacement ofa N\
body under the action Fig. 38 S\
of a force repre- ’
sented by the vector b, then a - b is the work done hi the
force on the body. Another application of a'@ather
different character is of particular interest M0)Wwireless
amatewrs. Let e be a vector of magnitude dlbgakidyraritlorg.in
van angle . Further, suppose that ¢ is.proportional to
time, increasing at o radians per secp.n\d;‘ its magnitude
being ¢ when £ = o0, \J

that 15, 8 — wt+ ¢ )

Then e v =2¢cos v(\(‘z;t“—i— &)

Thus 2 sine wave of e.m.f. can\be represented as the scalar
product with a fixed unigvedtor of another vector of con-
stant length rotating wi{h tonstant angular v.,_relot_zlty {w).

It will now be shoiwn' that scalar multiplication obeys
the same formal aws as ordinary multiplication. Tt
follows from the definition that

&7 ab=hb-a,

s0 that 4 %f,ﬂar product obeys the law of comr%’nu!:aticgn.
Fur;%;i}ff is easv to show that scalalf multiplication of
vectopsgbeys the distributive law, that is,

LN er{adb)=(atbre=a-cthe
\\I fe demonsiration is fllustrated in Fig. 39. We have

{a +h)-e=00x 0C )

— (0P + PQ) % OC
= 0P x 0C+ PQ x 0C
=a‘'ct+b-e

=)

&l
NS
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It follows directly from this that
@+b (c+d) —ae+a-db-e-b-d

and similarly for the scalar products of vectors expressed
as the sums or differences of any number of component
a8 vectors,  Operations .
of scalar mulaiplicasd
tion of vectors Can
therefore e ciferd
out in just l.hé;“}ame
way as thg~ardinary
L multiplipgtion of
similaf ¥ number
grodph,’

www dbraulibrar$er e 1MPORTANT SPronisCasEs

{@) A% 8 =a X a X.gof\0 = a2,

This can be written OY
a? S\at

Thus the scalar squarcf & vector is the square of its
magnitude. A\

(i} Ifaand b are perpendicular to each other, then

a'b =gl b x cosmjz = ab x 0 = 0.

#\cF - . .
"he convcr@f'fhls is also true with a reservation.

-
If A\ a'b=abcos d =o,
then : " a=o,
or AW, —
x’\ b= 0,
01'\;:.\;" cos § = o,
@ 15, a=o0,
..‘:":ﬁr b= G,

N\ or the vectors are mutually perpendicular.

4 This will prove to have an important application to
altcrqam_lg current theory in the following form. Supposc

tha_t 1, ty iy ete, be a number of alternaling currents

which meet at a branch peint of a network of conductors

as shown in Fig. 40, Then by Kirchhoff’s first law, the sum
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iy + iy + iy + etc. =0

at every instant. Now as shown in above,
each of these currents can be represented
in the form i, * », i, », etc, wherei), i,
are vectors ol constant magnttude rotating
with constant angular velocity, Therefore

Lhrr-i,t v i3 v fete. =0,

that is, (i, + i, +1i, < etc)' v = 0.

Therefore the vector (i; + i, + i, + etc.) Fig. 40 N

is zero or clse 35 perpendicular to v at every {nstant.
The sccond condition cannot be fulfilled at evéfyibstant,

for the vectors are assumed to be rotadinly MrhUbbasmerg.in
angular velocity.  Therefore \\~

i, —1i, i + etc. = o,
1 B 3 AN

s0 that Kirchhoff’s law applies not okly to the instantaneous
values of the currents which mgetdat a branch point, but
also to the rotating vectors{wllich, as described more
fully Tater on, are used to repigsent these currents.

o\
8D .
87. Ax IMPOQ\E‘I GEOMETRICAL PROPOSITION

. Thevectors g, L8 + b, 8, and b form a triangle as shown
InFig. 41.  Fyem Section 85,

P—(a--h?=a'fbht+za‘h

$
:~\0.
Puttiﬁg’x'n the scalar
magritides of these A

saldr  products  and
\”\ WUares, arh=C
a
P =a> 4+ 5% L 2gb cos @ 5’—0
=a* + b2 —oab cos y, g a c
mnce § 4y =, Fig. 41
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88. APPLICATIONS AND DEDUCTIONS

(a) Given two sides of a triangle (2 and b) and the angle
{y} between them, the magnitude of the third side can be
caleulated from the formula

% == a® + 5% — 24b cos v, O

(8) Given the three sides of a triangle, ¢, &, and ¢, st{le
angle y between a and 4 is given by \ N

Cos y = {a® + b% — ;%) ogh It
which, together with the fact that y must be leg§ than 180°,
defines y completely, ¢ &

It follows from this that if two trianglc.s”a}c equal as to
the lengths of their sides they are equalNh every respect
(see Section 74). N

www.dbfaliliBharyperiaincase known as E}x@l’agoras Theorerm.

If ACB is a right angle (Fig. 42\then

COs y;,é"o,
and ¢ :—-“'t’a.zﬁ-f— 52
Thus, in a right-angléds ‘triangle, the square on the
hypotenuse is equal tonlie sum of the squares on the other
two sides. 4

This leads to,ihe" functional relationship between the
trigonometricall vatios of an angle to which a reference
was made h;%nticipation in Section 76. Since (Fig. 42)

A\ at 4- b2 = ¢?
87 @ + ey -
or N (afe)® + (Bfc)% =1,
th’t:\ié; {cos )% + (sin )2 = |
JOfy'as it is usually written, 4
Qe cos®f + sin2f = 1.

e 2T . . .
#\\ This relationship can of course be ex-
N,/  pressed ina variety of ways, For
Instance division by cos?8 gives
I -+ tan28 = sec?g

and so on. g - a C
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Examples X1

1. The vectors a and b are respectively 5 ¢cm and 10 cm
in length, and the angle between them is 30°. What
are the values of

a-h
|a + bi,
|al _h|;

{fa+b) {(a—n?
Show by calculation that
(8 +b)t =a? + /3ab + 5%, X
(8 — B)® — a® — 1/3ab + b2, ~»§

/
2. A rhombus is a four-sided figure with all it
equal length. Show, by vectom,“,t]&;g,tdgg‘iggpﬁ&! Sorg.in

are mutually pcrpcndicular.
3. Show ithat af = const, =7 '\{'
defines a circle of radiug 7 if one engh of}a 15 fixed.

4. Show that thc area of a paralIsIogram having the
vectors a and b as 51dcs is “\"‘

v (mﬁ)2 - a?'rW
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89. Tur OprratTor “; "

"The symbol 7 is very widcly employed in altcrnating
current analysis but there is a divergence of opiuion as to
its essential character and occasionally discussions arise as
to the legitimacy of certain applications of it or as to the
interpretation of expressions in which it appears, p

Of course any system of ideas which, to put it colloguially,
“delivers the goods * and which is self-consistent, cahybe
used as the basis of a system of symbolic logies\ The
operator interpretation here described is not put ferward
as the inspired word and only true gospel. {AN that i

claimed for i that it is

clear and selffeonsistent and

avoids somps.of the difficulties

www.dbryulibrary.org.in of intquretation asscciated

4 with theéimaginary quantity

andredmplex number nomen-
clatiwre.

Two types of operator
S\With a vector operand have
, o8" already been  introduced.
Fis. 43 X8 The first is simple scalar
multiplication represented by the a in za,, which increases
the length of its{dperand without altering its dircction.
The second is the bperator - 1 which reverses the direction
of its operand ‘without changing its magnitude. A third
will now héyntroduced. The operator 7 rotates its vector
operand{titfough nf2 (90°) in a positive direction in a
given plafie without changing its magnitude (the plane of
the éperation will be taken throughout as the plane of the
}Q’ﬁ}r). The vectors a and ja will therefore be as shown
{dn'Fig, 43.

3" It follows from the definition of § that
AN
Qg - Ja) = —a

For shortness j{ja) can be written A/a and still more com-

pactly as 28, but the real significance of 7% should be borne

inmind, Then
)= —1().
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Similarly B =—j

and Jr=1,

so that the relationship between “ powers of j ' and j

is the same as that between powers of 4/ — 1 and /—1,

Whether or no this establishes any identity between

j and +/— 71 is irrelevant to the present purpose.

The imporiasnt point is the effect of powers of j, that 15, of N

successive operations with j. (\A
The opcrator j can obviously be combined with a (™

scalar number or multiplier, and the association is comk .

mutative, for ¢j» is the same vector as jav, from whlch it

follgws Ehat the operator gf Is the same in effect as _}{

(11

g0, Tax OPERATOR (a4 7b)

The obvious interpretation of (a + j%) Qll%rauh]qijg,‘\{ orgin
This is illustrated in Fig. 44. Notice that'\
(a +jb)v = (jb + gu v’
by clcmemary gcometry. In the zbove, ¢ and & can be
any positive or negative numbers OF Tractions,
It follows from para. {¢} of, Sectzon 88 that (Fig. 44}
BAz —,,BC’B 4 CA2,
that s, writing » for the qagnitude of B4,
risie® + b3,
or P IR~ iy 1)
while @ js dcﬁned by
sind EJ:: blr, cos 8 = afr, tan & = bfa,
whmh md,lge f quite
definite forfriven signs
and mabnitudes of g
ad %% The effect of
{he Joperator (a + jb)
\rs: thus seen to he a
Ota’glon through 4
spectfied ag  above,
¢ombined with a
mlﬂtlphcatlon by r =
¥ 4785 and this
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effect i3 quite independent of the actual operand, which
may be a unit vector as in Fig. 44, or any other vector
whatever. Further, by a suitable choice of ¢ and 4, r and
& can be made to assume any values whatever, and any
vector in the planc of the operation can be represented in
the form (g -+ jB)». The operator {¢ 4- jb) can therefore
be regarded as the most general possible form of oge,
efficient in any given plane. Its importance for students
of electricity lies in the fact (to be demonstrated Jater)
that any alternating current impedance can be ekpressed
in this form. ‘The fairly detajled study of thiswgoellicient
and its combinations i therefore a Practiegh rcecssity.
The calculus of such coefficients will proveltabe identical
in form with that of complex numbery,” but its full
¢ometrical significance will probablybe missed if this is
fﬁ‘fé’no%rl%rantcd. AN

The effect of the operator candbe’ specified cxactly in
terms of a scalar product. I the)vector 1 is of length «
and direction ¥ with respect to ¥, then

0 ou 2 cos i,
and from the preceding paragraph it follows that
(@ + 76y v = ru cos (¥ -+ &),
a result which should be noted carefully bccause of its
later significancg in alternating current analysis.
X §1 ADDITION OF OPLRATORS

. By ap@lying the laws of commutation and association
in the addition of vectors,

O +18) + (e +jd)}s = (a + jB)w - (c + ja)w

O\ == gp \—}—_}Yw + ev -+ jdv
-~ = av -k cv - jby 4 jdy

={a+cjr + (jb + jdiv
= e +¢) (6 + &)},
that is, the operator {a +78) + (¢ +jd) is equivalent to
the operator (a -- ¢) + j(b + d).
The reader is ‘advised to imierpret all these steps
geometrically. It appears that the addition of operators
138
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follows the same rules as that of complex numbers, The
result can obviously be extended to the addition (or sub-
traction) of any number of operators,
g2, EQUALITY OoF (OPERATORS
The equation

la 4+ jb)v = (¢ +jd}w R
clearly implies the operator equality \' \)
(a 4 jb) = (¢ +Jd). AN
If to each of the equal vectors in the first equationiwe)
add the vector {— jb — ¢)v, we get : \\

{a — c)v = (d — b}jv, .
that is, a veetor equal to another which i&/p@@. piiotlBFatey org in
it ; but this is impossiblc by the definition Kft@' rector unless
each is zero. pe

Therefore it {a +jb) = (¢ + A"

then @ —¢ = o andd\~ & =0,
that is, a=cand b= d.

This process can be comparg@avith the separate equating
of the real and imaginary parts of equal complex numbers.
In operators the compofients can be referred to as th’l,?
« and b parts, ory gevhaps better, as the “axial’
and ** non-axial *’ p&i\‘g. Neither of these alternatives 1s
quite satisfactory, (but either is better than t’hc customary

real ” and & §faaginary ” which are misleading and
confusing, O

Asa SPC.Ci?c'l.\aSC of the above, if

+ih=0
N\ aT] 5
then = ga=o0and b =o0.
)
«\”\ 03, MULTIPLICATION AND DIvISION OF OPERATORS
thBy the geometry of similar triangles it is easy to show
at
a{(c + jd)v} = alev + jdv}
= acv + ajdv
= acv | jadv,
189
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and similarly,
b{le + jdyv} = bov |- jbdy,
and Jb{(c L jd)v} = jbev + jibdy
= jhey — bdy,
and, by addition,
(e + jb){le +jd)v} = acr + jadv = jhey — ba’v\
= {{ac — bd) + jlad + 2y
The intermediate brackets on the left-hand side &3n be
omitted, though they are required for a compughensible
interpretation. Then e\
(@ + jb)(e + jd)v = {(ac — bd) —|—j(.@dx.}\.’ bl b,
or, considering the operators only, v
www.dbraulibreryhoyl)(e + jd) = (ac — bd)ylad + be),
which again is similar to the cortesponding operation with
complex numbers, o \d
The above two results forsaddition and multiplication
can be extended to divisiop\\powers, cte., precisely as for
the same operations with &2l or complex numbers described
in Section 55 et sez., aftd no new rules have to be learnt.
The interpretationsswill be sufficiently obvious in most.
cases. For instanée\the equation

e\J 1
. \\ u= a 4 jb v
really means’ that u is that vector which, operated on
with (@348}, gives v,

Q)

that (B~ (@ +jbu =,
Qg}e{’atjng on each of these equal vectors with (a -— jb)
ives
AN (2 —jo)(a +jb)u = (a® + 6% 4 = (a — jB)v,
& 2l a — jb
\ ; or u= t(ag _‘_ibg)‘ v,

which is the process corresponding to the rationalisation
of complex numbers.

.. The interpretation of roots of operators will require a
little more care, and will be considered more fully later on.
igo
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Before leaving this part of the subject, it will be well to
point out the distinction between (a <+ jb){c +jd}v,
which imiplies  successive operations on  »,  an
{a +jbjp - 1o - fd)v, which is the scalar product of two
vectors. 13y applying the results of Section 36 it is easy
to show iliat the latter is simply the number (¢ - &4). ~
This latter frm will be met later in connection with \
expressions (or the power in alternating current circuits. O\’

[

u4. ALTERNATIVE ForM FOR (a+ 7b) .\
Referring back to Fig. 44, N
@ =rcos @, and b = rsin 8, ’\\
50 that O
{a+jb) =7 (cos 8 4 ﬁé@@)d{{aulibl‘aryorg.in
and since the effect of (a + 75) is multiplicdtion by r and
rotation through 4 in a positive direction jt}s clear that the

operator (cos § = f sin @) O\
represents the rotation threugh \ .
¥ (Fig. 45). ONY

_ Sofar 4 has been taken to be N\

mherently positive, but thishs

Testriction can Dbe remoyed,

for if "

U = {cos § - j sing 8w
N

be written in the far

T 4
Ve — — I\ )

. cos 8 $ising " Fig. 45

It 18 clear that/1/(cos ¢ + j sin §) means a rotation of

amount @ jn @ negative direction, that is, a rotation — 8.

But by tlixprcccding section,

O 1 csg—jsing

“\:"\:" cosf 4 fsin @~ cos?d -} sin?8

\\‘” =cos @ —fsin
= cos (— ) 44 sin (— &),

50 that cos {(— &) +jsin (— §) effects a rotation of" - 0.
Therefore for positive or negative values of 8, (cos 8 +7sin 6)
effects a rotation .
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Successive rotations of #; and #,, these being positive
or negative, are obviously equivalent to a single retation
{6, - 8;}). Therefore

(cos 8, + fsin 8,}(cos 8, + f sin &)
=cos (#;, + 0.) +7sin (8, + 8,5 . A\

This remarkable formula, which, in its operator jutet-
pretation is selfevident, embodies what is known i phre
mathematics as De Moivre’s Theorem. Many ':géul_ts of
far reaching importance can be deduced fromjit. Some
of these will now be considered. e\

L &
g5. THE ADDiTION FORMULE OF, T’lﬁ{‘\wONO}IETRX’
www.dbl‘ﬁ?ﬁ)(‘gtyﬁblﬁ@)n+3. sin (6 + 0,) x.\\,,‘

= (cos 8, + j sin 8;){cos 8, + f sin,)
== cos #, cos 8, —sin #, sin 62+’j(sin 8, cos 8,1 cos 8, sin &)
by multiplication, as in Section 93. Equating scparatcly
the ¢ and b parts, W\

cos (#; +0,)%=cos 8, cos B, —sin §, sin 8,

sin (8 4By} =sin #, cos 8, 1 cos # 5in ;.
From these tuiB;\lmportant formula, many others can be

derived as éR}séiél cases. For instance, if — @, be written
for & \
2 O

€05 (0, — #,) = cos 8, cos 8, - sin §, sin 8,
oS (8, — 8,) =sin §, cos 8, — cos @, sin @,
\a:rﬁi’if in the first pair we put §, = 8, = 4,
A .
& cos 20 = cos? @ — sin? @
™ =2cos? § —1
=1 —=2sin?8
{since cos? ¢ - sin? § = 1).
Also sin 28 = 2 sin # cos 8.

Similarly formulz for the tangent and cotangent of sums
and differences, and for the ratios of 38, 48, etc., can be
obtained by inserting appropriate special values in the

1g2
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original formulw.  The product formulz
25in ¢, sin ¢, = cos (§, — 8,} — cos (&, + 83), etc.,
should be noted, as they have many applications in wireless

telegraphy and telephony. They are most useful in the
form obtained by putting 8, + 8, = x, #; — 0, = y so that

E s X — M £ ¢
by = 'i;}’ 8y == 0 ?* We then find )
'\
\/
. . - x — \
S x —+ sIn p = 2 sin :-y cos ---2—-2 N
. . £ . X — AN
SiN X — 8in ¥ = 2 CO§ Q—'ysm - 2_}

x —|—)’ wmt?raulibrary.org.in
COs ¥ + cosy =2 cos i -;:-2

—cosx - cosy =2 sin ¥ - S —-

Only the formulz for sin (8, 438,) and cos (4, + 05) need
be remembered by heart, a4 long as the existence of the
formulz immediately ahove, and the substitution giving
8, 8, in terms of x,ghand vice versa, are noted. The
signs of the » and 3 formulz sometimes are found difficult;
theY. are truc whatever the values and signs of x and J,
but it is casiest J{o)think as if » is greater than y and both
are positive andless than 7 (go®).  Then the last formula,

& most diflicult, makes sense because if 37 > x>y > 0,
!> €03 ysscos ¥ > 0; the left-hand side —cos ¥ + cosy
is therefore positive, while the right-hand side is obviously
positfye’ .

Ehese ““ addition formule ” can also be used to simplify
~Expressions like

/ C =acos 8 + bsin 0
for which the appropriate trick is to let

r = {a® -+ §2)
and then let 8, as in Fig. Section 8g), be the angle
or whion , as in Fig. 44 (8e 9),
. sin 6 = by, cos 8 = afr, tan 8 = bla
7 135



BASIC MATHEMATICSR

We then find

a b .
sz{; cos 8, + , sm 91}
=r{cos § cos 8 - sin @ sin 6,} )
=1 cos (8 — §,). O\
so that the maximum value of € is 7 and it occupswhen

6 € N\
= 8, A\
It is sometimes also useful to write the expressien
D=asinx+bsiny N

in the equivalent form KA
2 — \ —
D= (a+8) sin ™ cos ¥ 1 (2 Nip¥os g

www dbpmariordeylorif iand y, or 2 and é,*’g\‘\both pairs, arc nearly
equal. The second form of D3, casily deduced from the

formulz already given for st - sin y, and expressions
of the form

t cqs’.i'“-l— B cos »

can be similarly treatr;df whatever the signs of x, 3, q, 4,
« and g, N\,

66. TuE 'E?:&ONENHAL FoRM FOR (cos § + ; sin 8)

Since » équal rotations of ¢ are equal to a single rotation
n8l, » being a’ positive integer,

€os 2f (A Fsin 78 = {cos 8 + jsin 0}* =cos*d (1 -+ j tan §)™.

Nf),;{’,put nt = &,
then cos ¢ —i—J'singﬁ:cos"is (1 + 'tan¢)n-
’\\“. n J n

2 &

o3 This formula will remain true however large n may be,
0% so that

Cos ¢ +jsing = g cos"ff(r 4+ tan 'ﬁ)”.

n—= oo n

o

Now by sufficiently increasing #, tan # can be made to differ
f

from ¢/n by as little as we please, and cos® % can be made t0
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differ from 1 by as little as we please. This can easily be
appreciated by drawing a diagram showing 8, tan 8, and
cos @ for a very small angle . Therefore, remembering
the definition of “ limit »* {Section 61),

it. cssf'i—([ —l—ftzm(‘f’)?l = it (1 +.f?s)ﬂ

w—r 0 ?3 Frpm— ;
It has been shown that the muliiplying together of

operators follows the same rules as the multiplication of ¢ :\
real or complex numbers. Therefore the product

(I -i-jffﬂn can be written down by the Binorrgi@],"

Theorem for a positive integral index (Section 67), ":‘agd' the
limit when # tends to infinity can be found in exactly the

same way as is shown in full in Sectioff ‘68’.-db$§%lilﬁﬁw isrg.in

cos ¢ +jfsingd = \\
174+ (Jj;i _;_.%f’i)s —[—:Si:té.ﬁadiryf.

The infinite series on the right Wiﬂlb“e written S{ ¢} for
shortness, If x is any real numbes;, -

2 3
SE) =1+ % + ZT+§T
{Section 68), where ¢ is«the number 2-71828 . . . . But
this does not mean iS‘( j4) is similarly €', for how can
any number be multiplied by itself j$ times ? Nevertheless
¢* will be adoptéd’as a convenient short way of writing
S(jé), or the opsrator (cos ¢ + jsin ¢) which has the same
effect, and this/practice will not lead to any errors for it
has alreadyBeen shown that

{2958, + j sin 0,)(cos 8, + j sin 8)
Ny — cos (fy ++ B3) +7 sin (81 -+ 84);
'W}liﬁh, in the exponential form, becomes
4 Ejﬂl E’e’ — ef(@,-{-ﬁ,:,

~:;,_’x4 4 ete., ad nf. = ¢
4!

which is in formal agreement with the index law. The
J$ in & does actually function as an index as far as com-

mnations of such guantities are concerned, and the
exponential form of writing is therefore a convenient and

195
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legitimate way of expressing this fact. Remember, how-

cver, that the index behaviour is derived first and in-

dependently, and is not a deduction from the cxponential

form. On this understanding, any operator {g + Jb

can be written in the form N\
(a + B} = r{cos § + j sin §) = re?? :

. . a s g
where 7 and @ are as specified in Section go. 'LHcheon-
venjence of this last form for calculation will bf; apparent
later on. Remembering the effect of the Opcralor {s"’,
it is easy to see that 7e is a vector of magnitude # making
an angle § with the direction of ¥, so that{ *

re¥v-y = r cos @. :

In particular, the vector 'y is of magnitude é and makes

wrw.dbwddhibraty #H§I which increases z{lfhe rate o radians per

e\

\‘:

second (¢ representing the tim@\Nn seconds from some
definite zero or starting poinghy*that is, it is a vector of
constant magnitude rotating” with constant angular
velocity, and N

: éej“‘f.v:if‘: & COS cof.
Such an operator cali*therefore be used to specify an
alternating e.m.f._inthe vector form éy.  In practice
it will not be secessary to writc in the unit vector of
reference v, u{‘its’. implicit existence as the operand of &
should be bore in mind, and will generally facilitatc the
Interpretaion of vector caleulations. The significance of
this willidppear more Rully later on.

N

g, §/

\ 97. SERIES FORM FOk SINE AND CosIng

W\\ Another very interesting result is derived from De
o8 Moivre’s Theorem as follows -

cos & + fsin 8

=148 + {gir) : + fé?)f -+ ("?6:—)‘i - (é@” 4 etc.,

ad inf.
— etc., ad tnf-

— 1 L g _j8* 8 o
=1 {—38_2)_!_..3! _11_4!_}._31
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_ 2 g .
=1 — g, + .f' — etc., ad inf.)

3 o

+ {8 — g' % - elc., ad inf.).

I'herefore cquating separately the a and b parts. of these
operators

cos @ — 1 - + & .. ete., ad inf. L\
a2l 4! A\
sng =001 ® ot adinf. N\
3! 5! N

These scries are rapidly convergent for small valuc@fﬂ and
give as convenient approsimations for such small'yalues

cos § =1 — B%2 . i
' wwyAdbraulibrary.org.in
dn 6 — 0 — 036, 1000 s

X 3
98, THE GENERALISATION OF THE'QINE AND COSINE

The sine and cosine of § have @ysimple and intelligible
geometrical meaning when 8 is @0y real number of radians,
positive, negative, or fractignal, and we have seen that
they can also be represented as a series of powers of 8;
but an important thing<to notice about the series is that
they have simple and-intelligible meanings, even iffisa
vector operator he form z = a +jb, for they t}}cn
represent the suzhg of a number of operators, cach of which
can be reducegdsto’ the form a <+ jb. Such serics will arlse
in practice, Angit will then be convenient, and will save a
lot of writing; to denote them by the abbreviations sin £
and cosZy" This, as far as we are concerned, is all 'that is
mcar{t%b‘s} the so-called generalisation of the circular

fungtions to include * complex ” arguments.

4 ..\' Y
“\“99. TuE TixpoNExTiar FoRM OF THE SINE AND COSINE

Tt follows directly from De Moivre’s Theorem that

JEL I
sin # = - 7
& o e
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with similar formule for the other circular trigunomctﬁcq.l
ratios. This result is not of much practical value, and is
mentiored chiefly as an introduction to the nex( $ection.

100. HYPERBOLIC FUNCTIONS

Consider now the following exponential expressiong)

similar to those in the preceding section, thar is, Ke
€T — 7T N\
e @
2
and LY
e (Y
Pl
If x is any real number, positive, negatfive, or fractional,
www.dbraulibréfyoigin Soxt A ,|\\_’r L
2 3l BV 7!
 { 3
and AV
€ 4 e LY X8
2T TGt b

and, ag we know already;“the series are convergent, i
- These functions prows 1o be quite useful in connection
with the theory of gahles and transmission lines, They are
called respectively, “the hyperbolic sine and hyperbolic
cosine of x (because they have to the curve known as the
rectangular lily ethola a relation somewhat similar to
that of the(Sine and cosine to the circle).
The fubétion

0\ Ne/ et — e~ <

Q° T
VQH'Eh is clearly the ratio of the hyperbolic sinc to the
Q.:I';ypcrbolic cosine, is called the hyperbolic tangent. But
(5 these full ceremnonial titles are tog long for currency and
"\ are abbreviated as shown in the following list :—
N\ hyperbolic sine s — ginh * (pronounced * shine x 7}

ex

-— 7
T =
hyperbolic cosine x — cogh * {pronounced “ cosh x )
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GEOMETRY AND TRIGONOMETRY
. et + i
2 E]
hyperbolic izngent x = tanh x {pronounced “ than x”'—
th as in think)

r ¥

€ — €
ef + et
with similar definitions for the other derived functions A
sech x (pronounced ““ sheck x '}, cosech x and coth #. A
From the ahove definitions it will be quite easy to proye™
a number of formule analogous to those of trigonometry,

for example, cosh? ¥ — sinh?® x = 1. 4

So far, we have been talking pure and simplelalgebra ;
but just as it was found possible to give @bimthBigibleorg in
meaning to sin  for complex or * operator 4 Values of the
argument, so also sinh z, where.z = (a;'ihfﬁ}; is simply a
shorl way of writing the sum of the serigt\Qf separate operations
represented by z, 23/3 1, 2[5, etc. A

If this is clearly understood, ¢he' reader will have no
qualms about such operators asganh (g 4- j&) when he meets
them later in cable theory..tHe should even be able to
show that, far from being unintelligible mathematical
abstractions, they correspond to definite physical realities—
the summation of esgﬁtié waves that are being continually
reflected to and fro g the same path.

The generalised Interpretation of the circular and hyper-
bolic functiongfaken in conjunction with the exponential
formule, should enable the reader both to show, and to
understand, (% number of connections between the two
sets of ,Qk’nclions for operator arguments, for example,

N sin jb = j sinh &,
~O° cos jb = cosh b,
\ ) tan jh =j tanh &,

etc., etc.

101. Roots oF (JPERATORS
. By analogy with the ordinary arithmetical meaning of
root”, the nth root of the operator r(cos# +j sin 8)
199



BASIC MATHEMATICS

will be taken to mean any operator which, repeated » times,
that is, raised to the nth power, has the same cffect as
r(cos 8 - jsin 6). We shall now see that if # is an integer
there will be » different operators which fulfil this condition,
First let 7 be writtcn for that positive number whic

raised to the nth power, gives 7. For given values of r andn
there is only one such number. Now if m is any intgger\

1!!!4' E ' 3‘7‘7" . _ﬂ 1 _(“)_"_?2”__ ' f\ ’
[r lcos(n + - ) =g sm(}z . Y )r

= r{cos (# + 2mw) - f sin (§ + Qmﬁf.\},
as already shown in Section g6. By, «drawing a simple
quadrant diagram it will be easy to sed\that for all integral
values of m

! o N
www,dbra‘tlégl(agbﬁlﬁn '171;.‘) =cos 8, and Si{{{} + 2mw) = sin 4,
so that O

,:f”"{ cos (g + 2:1—77) —f—.} sin(-;9 + 2::‘!7?) }Jﬂ
= r((;'qkfﬂ + Jsin @),

and all the operatorstobtained by giving m any integral
value in A

S
ileoa®) 22 L 0
y 1‘:{&(,,—} n)-{—;sm(ﬁ + n)f
are nth roots of r (cos 8 4 7 sin 8). This seems rather a lot,
but actyally they are not all different. For instance if »
is 3, ;he;} putting o, 1, 2, 3 for m gives
AU 7 feos(tfs) + 5 sin(ey)y,

,f%w i {cos(-e + 2—?) + 7 sin (g -+ Qﬂ-)"

o 37 3 5/f
\\ rt {cos(z -+ ‘_I:-;') +Jsm(§ + 4;_11')}’

¢
r {cos(\;} + 27:-) G+ sin(g + 27 )}
But the last is a repetition of the first. It will be found
that putting higher values for m, or giving it any negative
wtegral value, will only give repetition of one or other of
200
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the first three roots.  In general, there are only # different
values of ihie nth root of any operator. Any reader to
whom this is new should draw out the various operators in
asimple case, say, forn = 4. The geometrical significance
of this many-valucdness will then be apparent. The value
obtained by putting m = o is called the ** principal value *,
andis sometimes written {r(cos § -  sin 8)}', the alterna-

five form W
N

N

Vr{cos 8 - sin 0} \
being used to indicate all or any of the roots. The many-
valuedness of the root sometimes enters into calculatigns

and should always be borne in mind. The Followi\ﬂg dare

some important special cases. A
(@) If 8 = o, www.dbgatlibrary.org.in
¢ . .oem N
Y= {ens 2T L 5 gin _) &
¥ k(,DS » w1 n /° "’x\
m=0, 102, . .. (n—1h

the principal value being r¥n.  If. ﬂ’ié"a’

AT =¥ (cos O ~ jsin 0) ; J":(c::x; 7+ jsina) = "
/N ':‘ i ; - '
that is;\ p= 1
(6} Putting 8 = =, , )
V7 (Cosm 8] =/ — 7
oy lam + Uz ~+ jsin 2
" .

= riin feos

(2?}%_4“_1_)?*},

and the p.tigxc'\jﬁal value is
\ﬂ./ " T s T
& enfefgan)
Fplginétance, ifnis 2,
w\; W

\, \/:'E:r*{cosg- —l—jsin;—r}
or 1t { cOs 321’ 4 sin 3; Ir

that 1s, v/ 27 = 4. jrh.
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102. GENERALISATION OF THE INDEX FowMura For
OPERATORS

It has already been shown that for any positive or nega-
tive integral value of n

{r(cos 8 -+ j sin 0)}* = (cos nf + 7 sin nf}. O

Also, by the preceding section, the same is trug (for* the
principal value when # is 1 /m, m being a positive\integer.
This leads without difficulty to the complete geiteralisation
that for any positive or negative integral or fridctional value
of n, the principal value of D
{r{cos 0 +jsin )}» is  r(cod m?»\—i—Jr sin nf).

Space cannot he spared for a detailéd development of this
“’W“"d]:i;@x‘ﬁf BB Which follows exactly the same lines as ﬂ}c

generalisation of the interpretation of an index given in

Sections 27 of seq. PN\

103. CAI.CUI;AfP}bNS WITH OPERATORS
We have scen thattany operator {a + j&) can be put in
the form re®, where *r2 = g2 + 42 and # is one of the
angles having bjias tangent. Referring to the quadrant
diagram (Fig,-go}'it will be seen that if 2 and 5 are positive,
dwill be a {hg’[e in the first quadrant, that is, less than 9o°.
If b is ppgkwe and ¢ negative ¢ will lie in the second
quadrantpand so on. Writing [§| and |a| for the mag-
nitudds ot o and g, then the angle a = tan~! 1&]/|a| is between
a agc,i'go %, and can be determined from the ordinary table
of @angents, and 8 will be +a, 7 —a w4+ or —a
agcording to whether it is in the first, second, third or
Nourth quadrant. An example will perhaps make this
% clearer.  For the operator 3 -~ J4, r i3 5 and & is an angle
~O in the fourth quadrant. Now tan—1 4/3 is 53.1°, so that
O 8 is — 53.1° " For the operator — g - j4, on the other
hand, @ will be in the second quadrant, so that it is given
by (180 — 53.1)°, that is, 126.9°, :
By using the form 7, the single operator which is t':q_uaI

to, that is, has the same efect as, any given combination
of operators, can be wxitten down at once. For instance, if
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a +jb =re?,

¢ 4 jd = 5e'?,
then 9)2/5elb 212056
&+ 752 (c 4 jd) = (re®)Zfse® = r5]se
( — (f2 /5) 61(28—@’
which can then be put in the form A + jB if desired, where N
A = (r%s) cos (280 — ¢}, O\
B = (r3/5) sin (20 — é). N\

A simple type of calculation which will occur frequently
in alternating current calculations is exemplified by.:thé

following. PR
Given that e = 'y, %
angd that i=e/{R+ _}'X}uy)gkl‘aulibral‘y,org,jn

£ and X being numbers, find i+ ». O
Notice that \ ;
e.- v = £,y -——QEZQQS wl
s the instantaneous value of an,’::éltcrnatipg emf It
will be shown later thati.+ vis ;j;ﬁilar]y the instantaneous
value of the “ steady state ”” alternating current produ.ced
by this emnf in a ciceuit’ of impedance (R - jX).
Expressing this impedanecin the form
&’\*g'jX = Z,
where 2% =R + X? and tan ¢ = X/R,

then A</
W 5 Jot é -
et & g € fuedly,
AR TR
0 t_hat\ e/
A = (¢R) oy = () cos (wi — $)-

0 . . : be
~\An alternative form for this result may sometimes
more convenient. The reciprocal of (R +jX) can be
expressed in the form
1 R—jX R _jX R X s
LDl s b b SR AR

since _j = g~iZ,
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Therefore .
Low = (RIZY ey v 4 (XZ2) éehe 2y - v
= (R/Z?) é cos wt + (X]Z%) ¢ cos (wt — n[2}
= (RiZ?) & cos wt + (X[ &sin wt.

So much for a brief introductory survey of the ro@in
features of vectors and vector operators. Theampre
detailed study of the subject will be confined gowthose
regions where it comes into immediate (_zontapii\xﬁth the
field of alternating current phenomena, in jlu;‘_ 1scussion
of which it will be found to infuse a beaugifol simplicity ;
but first we must see how it comes to b€ fssociated with
what would at first sight seem to be @ Huite different set of
ideas. The nature of the connectiap has already becn

wwrw . dbifgebdH@¥WES; but for its corplete,delincation some little

knowledge of the differential and itegral calculus will be
required, and to this branchof shathematics the next part
of this bock will he devoted.\J

R
NG
X NS
«ay
e

NS

e
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Examples XiI1

1. Prove the following formule :—
cosh® x — ginh? x =1,
cosh? ¥ + sinh? x = cosh 2x,
2 sinh ¥ cosh x = sinh 2%,
sink (x - y) = sinh x cosh ¥ + cosh # sinh y, O\
2. Prove the following formule :— e K
sin {@ + jb) = sin a cosh b - j cos a sinh &, N
¢os {2 + jb) == cos ¢ cosh b — j sin a sinh b,
e sin 24 sinh 26 ,m\\'
sin (@ -k j) = s QQiJEtEh 2b° A\,
sinh 2a 4+ § sin ybuw@raulibrary.org.in

(2l (@ 4 55) = ‘oo 2a T cos 25 C

3. Show that &.J0 _ o9, where‘tan 8 = bla.
a + b

4. Hence show that if ¢ is cqﬁstsnt and & variable, and
z is given by . .‘

I Sy, a—jb
= 75 1 "y Tl
2 ( a -+ Jb)

the locus of z is.\a:;ﬁrcle of radius 1/24.

Finall that z = - .
nally, s.hm\t at z Py
‘1'— re —
5 bhow&}m‘t gt = e,
© L rsng

\Mﬁ tang = | +rcos &
ﬁi‘(}onﬁrm the following t1ansf0rmat10ns
’ t—re 14?2 e

bz

I ..l_"?e'_iﬂ_: i — rE { —

and ; ; :;Z = § {cot § — cosec § €77},
where tan ¢ — rsin @

1 +rcosé
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H
1 — re

Hence show that the locus of the operator Tre
is a circle if r is constant and ¢ varies, and also if #1s
constant and r varies.

7. Show that tanh (a + j8) can be put in the form + M
1 —re'? O\

T 4 r¥ A
8. Express \J

%

o= W6 +id) N

C+in o
in the forms 4 + jB, and 7¢. (3"
9. One of the sides of an equilateral Qi}mgle is the vector 8.

o, Express . the other sides in, s of & and vector
www.dbjlaulib léﬁgi%t%i}sl? Hence show thai

ot e e
and confirm by calcg\bﬁc)’n.

s:\:“
™Y
N
A 3
+ ‘\’“
<
2N\
g\\./
).\
L)
> \"4
P Y,
Ko,
-
>
W
\J
O
S
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Chapier 6

THE DIFFERENTIAL AND INTEGRAL

CALCULUS
104. TeE OBJECT AND SCOPE oF THE DIFFERENTIAL ’,\‘\
CALCULUS N\

HE Differential Caleulus is concerned with the'
systematic study of variation, and its field of applica-
tion is therefore co-extensive with the whole domain

of natu(i'al phenomena. As Professor W}utﬁhéad hJhalsi
expressed it, **, . . the fundamental id %) which
is at the basis of our whole pcrcept%grﬁg a}prngﬁgfégn\ﬁflg'm
immediately suggests the inquiry as to ratetof change. . . .
Thus the differential calculus is condérned with the very
key of the position from which mathéniatics can be success-
fully applied to the course of ng.f.ﬂil:e .
105. RATE, OF CHANGE
The first requirementsis o make quite clear what is
meant by “ rate of change 7. Rate is the same word as
ratio, so that “ ratg ‘off change ” can be paraphrased as
ratio of changesa&\%n which form its meaning is alrea:dy
much clearer. (It implies two quantities, one of which
changes in cdfsequence of a change in the other. In
;ore techpical language, it implies a function and an
}de:pend@.lt variable. The rate of change of the function
is thugthe'ratio of the change in the function to the change
in th€ Variable which produces it.
JFhe most suitable example to take will be that one the
.. Contemplation of which first evoked in the brain of Newton
(He ideas on which the present form of the calculus is
based—a body moving in space, or, to_ make it a little Jess
abstract, a train moving along rails, The distance
{(measured along the rails from some fixed point) which is
travelled by the moving train is, in the full mathematical

sense of the word, a function of time. In all such physical
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problems, * time *’ means, of course, an interval of time
measured from some arbitrary * zero ” of time {anyone
who served in the war will know only too well what
* zero hour * means}. To fix ideas in the ahove instance,
we will take as the origin of distance some fixed point
on the rails, and as the origin or “ zero ™ of #ime the actual
clock time at which the engine passes this fixed point,
The distance from the fixed point will he represented by tht\
symbal s, which stands for a number (of miles, {eet, it hiey;
or whatever unit is most convenient) and the time will be
represented by the symbol #, also a number {ofiliours,
minutes, seconds, or whatever time unit is/pdest con-
venient). Then, in general, ~N
s = f{1),

w dbvabdebriyy 98t way of saying  the distanée depends upon
the time . Suppose we are told th téin a given case the
form of the function is lincar (see™Saction 37), that is,

5 =24 + bt
- @ and b being constant numBers. In the interval of time
between ¢ and ; L § (8t~being considered as a single
symbol meaning  a change of £}, 5 will increase by an
amount which we will represent by 8s5. The relation
between s -+ s ant?,t\-{— 3t is that given above, that i,

\'\‘~~ s+38 =a+ (1 +5

¢ =g -} & 1 48,
and since' 77X §=a -+ ¥,
'\ 85 = p&¢. .
Therefate the ratio of the change of s to the change of £ 1s
,s‘\ &U{St = b,

Brepresenting a certain number of miles per hour or feet
WLUPer second or whatever the selected units may be, Itis
) “in fact the speed or velocity of the train, and since it does

not depend either on ¢ or on 8¢ the movement of the

train is completely described by the single constant 4.

But now suppose that the form of the {unction is given as

S =g bt | g2

N
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Then in precisely the same way as before it will be found

that
$s = b 3 1 act 8t 4+ ¢ 82 = (b + 2¢ + c8t) 8,

so that the rate of change of s is
858 = b - 26t + ¢bL.

This depends not only on ¢, the beginning of the interval )\
8, but also on 5¢, the length of the interval.  1f the interval s\
5t could be reduced to zero we could say that at the ™
instant ¢ the train was travelling at 2 speed (& + 2ct) miles
per hour, or whatever the units might be. But that igjust
what we cannot do, for cach side of the equationgean only
be divided by 8¢ as long as 6! is nst zero (sce\page 49)-
Moreover, considering the matter physicalsePRG TR brg in
measure the distance 8s travelled in zero time.

This is the difficulty which confrouted Newton. He
probably solved it for himself so corpleétely that he lost
sight of the difficult character of thesideas involved. Be

~

that as it may, he did not resolve.the difficulty in language
sufficiently to prevent confusion® of thought on the part
of some of his disciples. The more discerning mathe-
maticians were greatly wortied by this difficulty for a long
while after Newton, _Itydid not worry the less discerning
ones, for they blotteditout under a cloud of bad philosophy-
It appeared that the quantity 8 had to be both zero and not
zer0, “ Fancysthat | they said, © What 2 wonderful
quantity it must be ! ” and gave it a wonderful name,
calling "it /A “ infinitesimal 7. But, unfortunately, as
Napolegd ¥émarked on one occasion, “You can call a
thing what you like, but you cannot prevent it from being
whaglibis ) The infinitesimal in its original form was 2
,ﬂls@PPOiﬂting child, and died comparatively young. =

{ \MActually, of course, there is no need for any mysticism
it this matter. The difficulty is completely resotved by
means of the conception of “ limit » described briefly in
Section 61. The reader is strongly advised to read this
section again, or, better still, to ro-write it for himself in
his own words. That is always the best way of learning
a new set of ideas.
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As long as 8 remains finite, however small if may be,
then

85/t = (b -+ act} -+ cBt.

Now by taking 8t sufficiently small, 35/8f can he made o
differ from (& + 2¢t} by less than any assigned amount,
that is, it can be made to approximate to (b + 2cfy withiny
every standard. This is expressed symbolically
It (8&‘/8{) = b -}~ 2t R "\“’\
&t —ro 4 ’\

The expression on the left is inconveniently Iong’ to write
down, and it is commonly abbreviated to,dsfdt. = Thus, if

§=a 4 bt 4 N
www.dbraulibrary org.in dsjdi = b - 2,

The symbol dsjdi is called tlls'\xdh’ferential coefficient of
s with respect to ¢”. Notige{the ‘* symbol " ds/di—not
the * fraction ” ds/dt, becauge\it'is nof a fraction. The paris
ds and dt considered separately are quite undefined. The ds
is not the limit of 85 whed, 85 tends to zero, because then s
would be zero. Similarly for dt. The symbol dsfdt
always to be considered as single and undecomposable
like any other simiple algebraic symbol, » for instance.
It is no more than a convenient abbreviation for

i- b\ It SsfSt.

N

i " Y —0

J. Theje'@te various other ways of writing the differential
cqefficient which will perhaps be met with later, but this
ome’is universally accepted, and will be used exclusively for
,\\thc present.
R\ In the present instance, the number ds/di is the instan-
8" taneous velocity of the train at the instant £ It is called
1 € \W instantaneous because there is no finite interval of tune
1N/ for which it remains constant, At a particular instant i
its magnitude would be (b + 2¢2,). The magnitude of
dsfdt at the instant #, can conveniently be written dsfdh
or alternatively (ds/dt), _ ,. The first is preferable for
compactness, but the second is more explicit.
B (o)

*
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The diffcrentiation of s with respect to ¢ leads to the

equation
dsjdt = b + 2¢t.
‘This is known as a differential equation, this name being
applied to any cquation in which differential coefficients
appear. By the solving of a differential equation is meant
the reversing of the process that has just been described,
that is, deriving from the differential equation the ordinary
algebraic cquation to which it corresponds. Notice that %
in the present case for given values of b and ¢ the differential ™
coefficient would be the same whatever the magnitude of ¢
in the original equation. There are therefore an infigite,
number of solutions of the above differential equation;and
additional information (generally referred to as 2 /< boun-
dary condition ™) is required to make thevsolionylobrplytary in
and unique for the given case considered, \Suppose for
instance we are told that \’ \
djde = px + 400
$ and ¢ being known numbers, and that)y is known to have
the value y, when xis zero. By analogy with the equation
that has just been considered,, :die’solution of the above
differential equation is N
» = (pja)* + gx + K,
where X is any indepeddént constant number. But we
are told that the relation: between y and x 1s such that when
* is zero y I8 ¥q. Pl;\t&jng these related values in the above
tquation w\,J
M= (pj2)o +qo +E =X
50 that the \c'ghﬁplete solution for y is
NOT s = e rg e

beingthe only expression for » which satisfies both tlg,ﬁ
differéntial equation and the given % houndary condition .
~\Phis, however, is by way of a digression. _It is put in
N\3mply to show what is meant by 2 differential equation

and by the solution of a differential equation, and 18

included at this place because it follows 0 naturally from

the ahove introduction to the differential coefficient. It

s with the latter that we are more concerned at the
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moment and the next thing to do will be to genevalise this
important idea,

I06. GENERAL DEFINITION OF " DIFFRRENTIAL
CoErrFICcIENT
Given that y is a function of x, the differential o™
efficient of 3 with Fespect to x at any value of » in the
neighbourhood of which the function is finite and..ton-

timuous is defined by QO
a4 d (x + h) — Fiwl
Zor £ A R (L

&’
FThe reader should have no difficulty in.s‘e}ing that this is
only the general statement of the Préicess which was
www.dbﬂa‘E}fo’éﬁ%ﬁmamarticuIar function inthe preceding section.
further Sllustration of it {p\p ication is given in
Section 1og.
I07. GEOMETRICAT INTERPRETATION OF THFE
I)IFb‘EREL\'I}'gii CoEFFICIENT

3

The curve shown in Fig. 46 is assumed to represent the
yanation of f(x) withwh that is, if 0S — %, SP — f(x). An
increase of x from,.05 %0 0T produces in f{x) an increase

QU2
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represented by RQ . Therefore putting & for the magnitude
of PR, :
fx + By = flx) _RQ_

..._h__ - tan .,b'
As % tends to zero, Q moves down the curve towards P.
In the limiting position when @ tends to coincidence with
P, the chord Q) becomes what is known as the tangent at P.
Therefore if PP’ in Fig. 46 represents the tangent at Pto
the curve which represents the function, then

df(x) _ w S+t
dy

T o h_ - . N\
where 4 is the inclination of the tangent at P with sespect
to the » axis. For this reason the differ;gnt‘{ral cefficient is

sometimes referred to as the slope of the fun AR

108. THE S1GN OF THE DIFFEREETIAL
COEFFICIENT »)
If at the point x, f(x) is increasing with x (as at the pomt
Pin Fig. 46}, then N v
flx + B
will be a positive number, and the differential coefficient is
th_e:rcfore positive. Con;v'e?scly, if the function is cl_ecreas;pg
with x, as at the poi t\P1 in Fig. 46, then the ghﬁ'crcntxal
coefficient will be néénive in sigm, corresponding to the
f‘a(‘-L‘_that the tangent makes a negative angle with the
% axis, P

10q, TH!‘;\'I}IFFER};NTIATION oF POSITIVE INTEGRAL

N\ POWERS OF %
: Thc}fdﬁcrcnﬂaﬂon of y = ", where n 18 2 positive
integen,’ is a good illustration of the application of the
ah:(“’é_ general definition of the differential coefficient. By
¢ Binomial Theorerm, )
a{n — 1) o-aps

(x —’rv h)n — xn _|_. en— 1k 4 -+ 2

+ n(n — 1_)_(;:_-_-—_2_)_ an 33 eic,,
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there being n 4- 1 terms in the expansion. Therefore as
long as # is finite,
(x - A)p —

3 — —=pxr1 _+__ H_(ﬂ

o I) =2
2

~+ terms containing A% and higher powers of 4.

By taking 4 sufficiently small, the right-hand side ca.u_:bc
made to differ from #x*—1 by less than any finite quamity,
however small. Therefore g >

2%
!

difds = devjdy =, EE AT o0
kA—o o\ “
Y¥or instance dx/dx = 2x; dyfdr — 1. Notice that the
above determination of dv/dx depends_omsthe fact that the
limit of the sum of a finite number pf\}t'rms is the sum of

"T'ﬁgﬁg%‘f; '8 terms, The readér 3§ cautioned against
assuming that the limit of the spmyof an infinite number of
terms is equal to the sum of the limits of the terms. It
may or may not be so, and fréquently isn’t.

If the above brief introdadtion to the differential calculus
is thoroughly understood,ythe reader will have no difficulty
in understanding the Subsequent sections of this chapter,
which will consist aunly of applications and developments
of these few comp Ir;gltively simple ideas,

110. RL‘],ESX})R DIFFERENTIATING COMBINATIONS OF

o/ Funcrions

‘This 5eéti6n deals with technique rather than pt:inciplcs-
As su€h™it is likely to be dullish reading but will repay

a%‘ndn
@ Differentiation of the sum of a number of functions.
N

uppose it is required to differentiate

J=4x% 4322 4 ox 4 10.
The best method is essentially that indicated by Hsop 1
the fable about the bundle of sticks. The above funcuogl
can be regarded as a sum of the simpler functions 4x%, g*%
stc. Now it is fairly easy to show from the definition of 2
limit that the limit of the sum of a finite number of terms
is equal to the sum of the limits of the separate terms.

ziq4



DIFFERENTIAL AND INTEGRAL CALCULUS

From this it follows at once that if #, o, w, etc., are functions
of x, and

y=u-+v+w-t e,

then
dy du  dv | dw
dn =dx Tax T dx T
Applying this to the example given, A
{
dyfdx = 124* 4 bx + 2. £\ *

N/

[Disappearance of the constant term. Notice that in the
above differentiation the 1o disappears. The disappear-
ance of any constant term is inherent in the process of
differentiation. This important fact must be\horne in
mind when the process is reversed. F ot ple il iy org.in
positive integer, it has been shown that the,d.c. fof 2 13
mL But 50 also is the d.c. of a7 f@nwhere ¢ Is any
constant number whatever. If, therefore; we are told that
Jis a function of x such that "

“’

djdx =,
then we can only infer that«3®
= 4 G,
where ( is some unikfiown * arbitrary ” constant for the
determination of wh‘k}h further information 18 required.]
(i) The differengigtion of a product of functions
I flx) ar}s g\(x) are two functions of », and

SOy = flol),

Wb g Sl Bl ) = SOEE)

oY & a5,

\/ flx + Bglx +h) — flels +B)

. o C)) 4 2 + k) — fl=)al=)
s

= o) L+ 10 %2,
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or, putting this in a form which is rather easier to remember,
d(nv) do du
& Tra TV
Consider for example the two functions »» and #°, .
being a positive integer. The product of these functions
is 1, and the d.c. of the product is therefore zero, thatds

-
¢\
afx*ﬂxn = x-—ndxﬁ xR di_ﬂ —0 \\ ’
- Ex T = dx_ dx - 3 X ', w
774
N
or =101y + x dEn g 9 .\
nx * dx — M “"\\.
dx—n )
therefore = — mﬂ‘_lxh“x(’.
i = —n—1 :'\ g
www.dbraulibrary.org.in = nx +*{

which shows that the formula fqr’:the d.c. of x# is true for
negative indices, @,
It is easy to extend the abeye result to products of more
than two terms. Tt wil] befound that
. oS d
d(:%w) = w%’t:-i— n:w-a,;;I + ww g,

N

and so on,

T\
(i) The diffefafiation of a qustiont
This canbe derived from the preceding, just as the idea
of a quot,i\ct}t'is derived from that of a product.
O Ify = ufo then u =y,
Thg\f'ight-hand side can be differentiated by the rule for 2
];{Qduct, and in this way it is easy to show that
b _1 [ do
AN dx = P {vﬂ __udx}'
NN (i) The differentintion of a function of a function
N\ This sounds tautological, for a function of a function of
x is a function of x, However, in a case such as
F =30+ 25 45 + 7 (a4 2x +5) +8, _
it will generally be more convenient to treat y as a function

of the variable (%% 4 a2x 4 5), which variable is itsclf a
216
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fanction of x. The function p = log (sin %) is anothet
instance, 'The general form is

u = fa),

and
5= plu) = ${fN) ) N
Suppose a increases to x + £, In consequence of which &
u increases io u + & and y to y 4 m. Then A L
du g K R
gJ_C“Jl—)O}l’ . 'i,,}
and . N
dy _ om
du k>0 k’ \:"\\\

Further, since the functions are assumed o ReIDRRITIR Ty or g.in
kwill tend te zero as 4 tends to zero, so thaty™
& B

du T h—o kINY

/
< N

R

Therefore R\
dydu _ p o\ gk

- -

dude x>k s—>o
It is casy to show frogiuthe definition of limit that tgc
product of the limits of two terms is equal to the limit of the
Product of the tcnriQ{\GB'that

Odde 0 {m "'5}

\, dude " n—rokh
7,3 _nm
] ;'\’." “h—>oh’
smc?\t’ke”quantities m, &, and k are not zero. But
..‘:::::' h m_ d}'
al \, k--a\-oﬁ T dx?
NTh
\/ Lherefore
dy _dydu
dy ~ dudx

For Instance, taking the first example quoted above,
y=gu® +7mu+38
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and
=% 4 2x 4 5,
dyjdu = 6u + 7,
dufdx = ax + 2.
Therefore
Glde = {6(x* + 2x +5) + 7} (2x +2) a0
= 12x% - 2622 -+ g8x + 74. R \)
An important special case is that in which, s.s that
fimction of x which makes .

¥t =P, that is, y = 74, \s

The differentiation of 3¢ by the above rule“ggb«'es
g0 (dypJds) = prrs
slﬁ]i%'sat'{ﬁi%ﬁggh}n this the value 607y in terms of x and
rearranging, it is easy to show thag
dlds = (gfgese-2.
We can therefore say tha,l:».’j;
Q’xn;’ﬂ:'c == nxtt

for all real values ”of'r’z,' positive or negative, integral or
fractional.
AN

WIII. STANDARD FokrMS

in ordeg %\acquire fluency in the applications of the
calculus if\is advisable to learn off by heart the diﬂ"ereptlal
cocfficignts of a number of the most common functions,
Jjustas.ene learns off by heart the multiplication tables at
amdarlier stage of one’s mathematical education. With
Jthese standard forms and the above rules for dealing with
}implc combinations of functions the differentiation of any

P |

" ordinary function is a comparatively simple matter. The

AN

\‘;

more important of these standard forms will now be
detailed.

(i} an _
It has already been shown that
dxnfdy = pym—1
for all values of ».
218
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iﬁ} &7

On account of its great importance, this case will be given
inful. Ify — ¢ then, by definition,

dy i, €t — ¢
dx T ko k

I A e A o
T h—wo € k ¢\
i & —1 O
=€ e N\
Now '\\"
A : Iy A3
‘._h{ SIS ’I‘\i 1—{--ﬁ- + =, TR\ ‘
2 i 3 3-4 ﬁm_{braul_lbriary.org.m
€tey ad . "

For values of % less than 1 the sum to infinity of the series
in the brackets is less than o\ o
U A2 A+ I+ etepddinf = {1 B)

(by Section 66). Therefore tE§' series in the braclkcts
¢an be put equal to K/{1 — i) where K is less than 1 as long
as £ 1s less than 1. 'Ihcr%fO}‘C

R

kg -h A R0 ! _2(_:[ :—'_k)_
&7 =1,
6 that ::\'“';fy‘l'ldx = a’ef,«’dx = & =

e "ﬁgh§\ﬂlp}5car that this could be proved more mn}f;ﬁ}'
by.diff?—.l‘ﬁ tiating term by term the series for €. hc
seties Sodobtained, however, is not necessarily equal 0 £1¢
differential coefficient of the sum of the original Serlc?;
\ft‘o}: € sum of the limits of an infinite number of termill
2ot necessarily equal to the limit of the sunt. It gener eyn"
% but it quite often is not, and the assumption may nev
¢ Mmade without question.)
Note that if
_ WML —— m
¥y =dae = a(ez) 3 219
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then by the rule for the differentiation of a function of a
function

dyldx = am(e¥)m—1er = gme™ = my,

Thus the function ae™ has the remarkable property that

its rate of change is proportional to itself. Further, it\s

the only known function which has this property.\'In

other words the most general solution of the diffetential

equation S\

Bfde = my

is ¥ = ae™*, A

where a is an arbitrary constant numberdor'the determina-

tion of which further information isyréguiired. 'This is the
e db}r%ﬂ‘iﬂar}an‘g?%*g.thf curious ;md I theér z'twkwar_d ‘numbtr

e = 27182 . iz always turpi?%‘up in applied mathe-
matics and physics, A\
The rather more general base

can be derived at qnp;a‘:’by writing the constant a in the
form e, that is, m islog.e. Then

A '}, = g% — (em)z oo g

and :“‘ ‘m
¢ '\”aja,r’a'x = et — m(sm)z = gt lOgcﬂ-
{1ii) Lo, x

This'case can be derived from the preceding, for if

L D

» ¥y = loga,
"\5.

N

N\ and the differentiation of hoth sides {the right-hand side
3" being a function of a function of x) gives
’ 1= e (dpjd),
so that

dyldx = d log x}dx = 1}ev = 1/x.
An obvicus extension is

dlogfx) & df{x)
dx TS dx
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(v} Sin &
The reader should have no difficulty in showing from
the trigonomeirical [ormule derived in Scction 95 that

(4 + B) sin (A__‘_B)’
2 2

sin d — sin B = 2 cos

5o that
sin (x -+ Al sinx == 2 COS (x + g) sin hfz. A
Therefore, if y — sin x, O -
A A (7
e (540 Y
— cosx, S\ N

for, as i ilv s - i i - Jimit
1" as is casily shown {rom the series for sin r%huj Try org.in
of {sin §}/8 when 6 tends to zero 1s 1. AN

In a precisely similar manner it can be sk{bm\'n that

.. d (cos x}jdx = — sin xDNJ
Notice that O

d {sin mx)fdx = m Cgsjrkx,

by the rule for the differentiation@fa function of a function.

The other trigonometrical «fiinctions are clen}!cd frqm
these two, the sine and the,cosine, and the differential
Cﬁffhcwntrg can thereforefbe calculated from the above
fules relating to co h'@zaftions of functions. Space will
ot permit of their Tliing detailed individually, but they
are listed below for reference.

Funcpior! Differential Coefficient.
L sec? x
{Cot x — cosec? x
,C\\géc x sec x tan x
N cosec x — QOSeC X CotX

o 'Sn:m“ch for what may be called the ABC of the ca_lculuf»-

It certainly I8
matter is there:
n]y be had bY
some more.

Fatl};?fi concentrated, but the essence of the
pra Jdarity with the ideas involved can ©
{F tice, and then more practice, and then
W examples are given, but many IROre n

worked by a beginner. A good plan is to express a
221
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function in two ways and differentiate cach form. Work
can be made more or less self checking in this way.
(Examples : (g - x)3 and 4% -+ ga% - gax® + 3% tan2x
and (2 sin x cos x)/(cos®x — sin®x) ; and so on.)

112, SUCCESSIVE DIFFERENTIATION

This does not introduce any new ideas, hut only some
more * shorthand . Iy is a function of &, then in gericral
dy/dx will also be a function of x, and as such gcan Ve
differentiated with respect to x, giving \ S

S,

d ,dy W)
o (@) R
Since this is rather cambersome te writeyitis’abhreviated to
d2pldx?,

ww w dbPRlPLaEy PLRAD heing, so to speak,:i;}}lftip]jed together as

if they were numbers (which of gelwse they are not.  Itis
merely a convenience of ngtation). The process can
obviously be extended, giving #%/dx3, diyidxt, etc., dy/ds
being referred to as the nth;&jffcrcntial cocfficient of ¥ with
respect to x, or sometimésbas the nth derivative. As ap
example, if N
A J = axd,
. dyldx = gax3,
c2\J  d¥/dx? = bax,
B\ d%rfdﬁ = Ba,
and O diyfdst = 0,
so that #th€ process terminates. On the other hand 2
functiém such as sin x can be differentiated for ever. In
thl,S\ atter the trigonometric functions have a peculiar
’E{Qperty which can be illustrated by

a sin mx -+ b cos mx

A dyfdx = am cos mx — bm sin mx

— am? sin mx — dm? cos mx
= —m¥.
No other function can be found which has this property
that the second differential coefficient is equal to the
function multiplied by a negative number. In other
words the most general solution of the differential equation

d?yfdx® = — m%

d%/)dx*
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i y = a sin mx + b cos mx,

where ¢ and b are constant numbers which can only be
determined by additional information. Suppose, for
instance, we are given that

dldx? = — 169 y (that is, — 13%3),
y =10 when x = 0,
dy/dx = 26 when x = 0. \
Then the general solution is AN
y = asin 1% + b cos 134, A
so that SO

dpldx — 13a cos 13x — 13b sin 1% \\
Therefore when x is 0 we have N

(}'\}o = 10 =&, . www.dbraulibrary.org.in
(dyfdx), = 26 = 13a, that is, 4 £3,2;

giving as the complete particular 501111510?1,\
¥y = 2 sin 19x + 10 COR P3¥.
R

113. PARTIAL DIFF}}R‘ENTIATION .
Here again there is no n«i{}?’idca but only ?.ddltlonal
notation. ~ As already p()iIltI’:'d out, two or more 1ndt_3P°“d"
ently variable numbers¢éah be combined in a variety of
ways to give another.nﬁ}ﬂaer. For instance, if x and y are
independent varial'}l@sf
Ne = ax® + bxy + ex?
13 a function pf€He two variables ¥ and y. Sucha function
could he peprésented geometrically by taking # and y as
rectangula co-ordinates and z as the vertical. _hmg{l;
above the%, y plane at the point %, 3. The equation wou
the?‘”ﬁe ne a surface. Now in general, the rate of change
of\gthat is, the slope of the surface, will d_eperlld on the
~difection in which it is measured, a fact which is demon-
\Atrated afresh every time the driver of 2 waggon zIg-Zags
Up a hill which is too steep for his horses. The terlin
differential coefficient ** is therefore indefinite unless the
litection is specified in some way. There are two G'i}illf'ﬁc‘
tions which naturally suggest themselves, and which are

generally of more interest than any others—the directions
223
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of the x and 3 axes. Moving in the dircction of the x
axis means that y is kept constant (if this is not immediately
obvious, the reader should draw the axes. Then it will
be). As long as y is kept constant, z is in effect a function
of the single variable » and has a differential cocfficient
with respect to #, that is, a slope in the direction of the ¥
axis. That is what is meant by dz/dx in such a case, only
it is written dz/dx in order to distinguish it from the ‘ease
in which z is a function of % only, in the full ordinagy)sense
of that phrase. It is called the partial differgntral co-
efficient of z with respect to x. Similarly forac/dy. For
instance, in the above case, that is, R4

2 = ax® + bxy + 9%

www.dbraulibrary org indzfox == 2ax + by, A N\J

2

.’\
a

\ W
) 3

\ 3

since ¢y® is by definition a constamt as far as this rate of
change is concerned.  Similarlg)\

2zl j_,—"ﬁx :i— acy.

Both these partial diffg:r.bﬁfial coefficients will, in general,
be functions of » and~af*y, as they are in thc above case,
and will therefor®, themselves have further partial
differential coef;?,c:icnts, defined in the same way. Thus

S ey

N

N 2 ax_ Dx ’
which 13 Written for shortness 3%z/dx2, is 24, and
SO 2
O” Jy (ax ;

JGhich is abbreviated to 2%z/aydx, is b, Notice that 2%2/24%
band 2%/ypdx have different meanings as defined above.

It can be shown, however, that if they both exist they will
be equal, as they arc in the present instance. The proof
is rather beyond the scope of this work, .

The reader should have ne difficulty in showing that if
% is a function of a function of ¥ and y, that is,

z = flu)
where b= qs(x) J’) [
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2z _ dfls)
then A A
and 3z _ df1u) _2?“_
2y du 2y

The proof follows exactly the same lines as for the rule
for the differentiation of a function of a function, and is
omitted to save space. Consider, for instance, the anode
current of a triode valve, which, using the usual symbols, N

can be expressed in the form L™

fa = f(b‘a -+ iy + a), Oy

where o is a constant. The quantities va and ggare’ in-
dependent variables, and have probably héen” varied
independently by readers of this book envsidbyaehtasiensHry in

The rclation can be put in the form \
ta = fIV), where V = ua -{—'ﬁafb 1 a,

which gives 7z as a function of 2 funqtidﬁ‘of the two variables.
The slope of the anode-current—grid-voltage characteristic
is ™Y

o, AP,
and of the anodc-curr{:nt—anode-voitage characteristic
2 Q) 2V _ dfP)
o™ AV e dV
W\ Dia _ Bz_'_c_‘
so that N2 S, B
Notice tHat df(V)/dV is the slope of what is sometimes
callcs{"l:hé “ lumped volts *” characteristic.
O\

ve _ AN _ dAV)
P*dV,

) 174. CRITICAL VALUES
/¥ Given a circuit or some other combination of apparatus

“\“the performance of which depends on, or, in other words,
V' is a function of, some variable condition of operation, 1t 18
generally desirable and sometimes very important to know
what condition of operation will give the best performance.
Suppose, for instance, that a battery is to supply electrical

8 225
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s p : T3 power to some vari-
. N - 4 able load resistance,
sk f TN 1 What will be the mag-
A 1N = nitude of the resistance

i which will absorb the

ous f S 1 HHET  maximum power from N
- f G125 a battery of given

LT characteristics ¥ ¢hutch
Tt problems are (of fre-
quent occufreiice in
: applied .4 electricity,
;70 and the'd2chnigque of

o5 i L -H
b T 117 the differential calcu-
- JlugNfinds one of its
= ot valuable appli-
x " { ‘eations in the solution
Fig, 47 ") “of such problems.
) \ First, let us examine
2 little more closely the exatpple quoted above in order
to get a clearer idea of ghe'nature of the problem. If
the * open circuit ” ef. of the battery is ¢ volts, its
internal resistance R, “ehims, and the resistance of the load
R ohms, then the {;ﬁrrent will be,
y \“ i=¢f/(Ry - R)
amperes, by, Ohm’s Law. The power absorbed by the
load will,\ b
O i B
A =R _ s
:“\.t”\ ? K (R +Ro)2g ’

éf%ﬂ' 1s thus a function of R for given constant values of e and

5
[+x}*

[~ 1}

=)

})JT‘!'-T'I-

w3y, Tt is therefore also a function of the ratio R{R,, and

or the present purpose is more conveniently expressed in
terms of this ratio. Putting x for R/R,,

= __x 82
(1 +x2F R}
and the variation of the power g with R is scen to be

essentially the variation with x of the function x/(1 -+ %)%
a26

. b4
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Calling this function y, the variation of y with x is shown
in Fig. 47. This is the simplest form of ** efficiency curve 7,
and in most practical cases the variation of electrical
efficiency will' be of this character. It appears from
the diagram that y reaches a pronounced maximum
value of } when x is 1, that is, when R = R,. Thereforein
this particular case the maximum power obtainable from
the battery is e2/4R,, and the *“optimum ™ load corre- (%
sponding to this output is a load equal to the internal\|™
resistance of the battery, § M
Now let us see how this same conclusion could be reathed
withcout the trouble of D
drawing the curve of
the function, by apply-
ing the technigueofthe
differential calculus.
In Fig. 48 the point
P, is assumed to cor- f
respond to the maxi- A\
mum value reached by N A
Y in the range o to ol
of x, y being a con- SERETES Xy
Elnuous function of xin 2 Fig. 48
e range illustrated ind
the diairam. Up 40.P,, y increases with # so that dy/dx
is positive, Frori%’l to Py, ¥ decreases with x so that
dyfdz is negative. The point Py therefore separates
positive and\négative values of dyjdr. It will be assumed
that the va\i'i;ition of dyjdx is continuous. Thqn the point
of separation of positive and negative values 15 the value

O\ dyjds = o0

Athat is, the tangent at P, is parallel to the x axis). Notice
“\that from o to x, dy/dx decreases continuously. 'This
/means that d(dyjdx)/dx, or d*/dx® is negative throughout

this range and thercfore negative at Py Thus for the

maximum value at P, (corresponding to the value x; of x},

N

4

dplds = o,
and d2y/dx® < o (that is, is negative),
227
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or, another way of writing it,

d)’/dxl =0,
and ' d¥/dx,? < o,
In a preciscly similar manner, the point #, will be a
minimum if N\
dyldzy == 0, N o
and d%y/dx,® > o (that is, is positi'{e;l'. \)

It is important te notice that the condition, dyfdx = o
alone will not necessarily determine a masimum or
minimum value of y. At P,, for instance,/#ht fangent is
parallel to the axis of x, so that dy/dess 6. However,
dyldx is positive on both sides of Py \Lhercfore zero is a
minimum value of dy/dx, and dy/dxE passes through zero

raulBrar T'Hig i0known as a point of dnflection.

The example already congidered will serve as an
iflustration of a maximum valye’
If 7=l + %)%,
dyfdx = {(1 + A2 251 + (1 + 2,
which reduces o 0%

s = (1 — Df(1 + %3,

MY
p '\‘~..3z§y,-’dx = o when x = 1.
Also it is Basy to show that

o dyldx® = — a(2 — x)/{1 4 %)%,
which.j negative when x = 1. Thercforc y passes through

amdzimum value (1) when x = 1.

so that

oThe following is a very useful practical peint in

onnection with maximum and minimum values. Ic{
frequently happens that the quantity to be investigate
can be regarded as a function of a function, for example,

> =g (u),
u = flx).

The critical condition is then
b dplw) du _
de ~ du dx T

where
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so that either

ddu) _
72

or

di

&=
and in the majority of cases it will be the second condition
that counts. Take, for instance, the case O\

y = 1//RE + (oL — 1]wC}?, O
where R, L, and o are constant numbers, and & is vaptahlc.
This is in effect _ A
-y = I/‘\/ﬂ’ 4 w'\\

where }
=R+ (ol — 1J;wmar\dbraulibl'ary.OI'g.in
There is no critical condition for dy/du,.];@t.
dufdC = 2(wl — 1]QHel?,

which will be zere when wL =g{wC. There is no necd
to write out the whole differshtiation in full in this or
stmilar cases. N .

This is the straightforward or rule of thumb solution.
But a person who work§\by his head and not by rule of
thumb could go strajght to an even better solution without
knowing anything\’ beut the calculus. Putting

N x=owl—1f wl,

then if € var\‘i’és; x varies too. We want to know when

N N S

"\5
is a\Mmum if x is allowed to vary. This will be a
maximum when . 4/R2 F 47 is a minimum and +/R® -+ «°

Wil be a minimum when R? 4-x%isa minimum. But x*

o/’

e€an never be negative. Therefore its minimum value is 0.
Thus the minimum of 4/R% J x? occurs when x = o, an!;l
this gives a maximum value to 1/4/R? + 5% This
maximum value will thus occur when € or L or w are
given such values that

wl — 1fel = 0.

22¢
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BASIC MATHEMATICS
Examples XIV

1. Find the first, second, and third derivatives of
i ax? +bx + ¢

i, a -+ bfx + cfxt. N\

ii. go sin x + 15 sin 2x + 10 sin 3.

iv. e2* sin bx, )
7'\
v, a% . \/
vi. a* log (sin x). N
2. Solve the equation R&4

dQldt = — Q) JCRN)
where ¢ and R are numbers, gu{\&u that ¢ is 10 when
'\ &
3- Solve the equation P \'4
dhjdtt <\~"25 m¥,

where m is a numb;r;:givcn that i is 0 when ¢is 0, and

that 5 is 10 when &35 /2m.
4 Find O
foarz;'ax, bz!{h}',’\'}%/bx’, D%2/2, D3zfoxdy, difopdx

>3

b\ z =ax® + by + o?

and ()
¢ g = €% Thrgin xy,
5. /Discuss the critical values of

O %/t + 2ax + %%,

i, xf{1 4 %),

6. The instantaneous rate of motion of a particle moving
in a straight line is given as 50 4 100¢ cm/sec.
How far will it travel in an hour from its position
when ¢ = o?

7. The distance, in cm from a fixed point, travelled by 2
particle moving .in a straight line is given DY
10 4 500 — 5t2 where ¢ is in seconds. At “’hant
distance from the starting point will it come to rest:



8. If xy == ¢ == constant, find the critical value of x + y.
Is it a minimum or a maximum ?
9. If 7Y — '

dx?t ? ) \(\.”?}

show that either ‘\:}
y = A= + Be ke AN
or y == sinh kx + D cosh kx ,;j\}\ ’
will satisfy the equation. Express C and D{i‘i;\tcrms
of 4 and B. N . ‘
ww“;,f@auhbrary.org.m
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N
N
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DIFFERENTIAL AND INTEGRAL CALCULUS

How long will it take to return to its starting point
from the point at which it comes to rest? (Note :
starting point—not fixed point.)

251
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BASIC MATHEMATICS

115. VECTOR FUNCTIONS AND THE DIFFERE S TIATION
OF VECTORS

Now we come to 2 section which links up dircetly with
alternating current phenomena, and thus with wireless
telegraphy, Q)

Let v be a vector of magnitude » and direction 8 relative
1o the fixed unit vector of reference » paraile! to the hottom
edge of the paper, that is, O

Vv =—ycos 6. ‘
Now cither or both of  and § may depend in sume’specified
manner on some independent variable, {t“for instance
(time), being functions of the independengivariable in the
ordinary sense of the word. Thus if iV 1) and 8 = ¢{1),
www.dbraulibrary org.in V-pry— f(;) COS/s j, :
and this equation completely defines the vector. Two
important special cases are  \™
v :‘ﬂdc“c.\s i,
¥ resthe cos wi
In the first case the vegior is constant in magnitude and
rotates with constant®angular velocity (e radians per
second}, and in #he second case the magnitude of the
vector decrease§ gxponentially while it rotates with con-
stant angular velocity . These vectors are illustrated in
Figs. 49 and 50. The locus of the end of the first vector
Is a cirglevand that of the second an cquiangular spiral.
The reason for the latter name wili appear later, It has
alregfly“been pointed out that a vector of the first type
%ﬁ\be used to represent an alternating current or potential
O\

and

V /4

Fig. 49 Fig- 50
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DIFVERENTIAL AND INTEGRAL CALCULUS

difference. Similarly a vector of the second type can be
used to represent what is known as a ¢ damped oscillation ”,
the word * damped ™ being used in the sense of * de-
creasing ”’—-presumably by derivation from the effect of
water on a fire, '

Leaving these special cases for a moment, consider the
perfectly general case illustrated in Fig. 51, where the
variation of the vector is such that its end point moves A
along the dotted line. Let OV and OV’ represent the ™
vector at the instants ¢ and ¢ + ot. If v be the change i,
v in the interval 8¢, then OV is the vector v + 3V, whenge
it follows that PV’ represents the vector 8v. Now the
differential coefficient of v with respect to ¢ is defined in
exactly the same way as in the correspondidg case of a
scalar function, that 1s, www&lbl‘aulibrary,org,m

dvjdt = it. dwfer. (N
&t — o At

The first thing to notice is that thexher of a vector is a
vector, since 8v is a vector. It therefore has both magni-
tude and direction. Further, VE%is'a chord of the locus,
and it is easy to see that in thetlimit when ¢ tends to zero
this chord will coincide in_dikection with the tangent to
the locus at the point K “The direction of the vector
dvfdt is thus the directiof(of the tangent to the locus of v at
the instant ¢. e

For the comp]ct&}péciﬁcation of dv/dt, that 113,.{01' the
determination of'the scalar product (dv/ds) - #, 1t Is neces-
sary to know (Bioth its magni-
tude and {ipcciion. These
will obvigu§ly depend on the
naturengf the timne variation of
the masnitude and direction of
th\f{‘ wector v, and the vector

. €vjdt can be expressed very
\ $sitnply in terms of these two
separate variations. On OV’
mark the point £ such that
OP = OV in magnitude.
Then PV’ represents the
change in the magnitude of ¥.
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Further, the angle POV or 88 represents the change in
the direction of v. The vector §v or V¥’ is the sum
of the vectors VP and PV'. Let v, be the unit vector
in the direction of v, that is,

V=10V, or v, = ¥/r. ~
"The magnitude of VP is approximately 186 and its direction
is approximately perpendicular to v. The unit  gector
perpendicular to vis jv,, or jvjo. As a vector, thierefare,
VP can be written approximaicly « M

VP = 038 jv/v. RN

Again the magnitude of the vector PV’ i8 3w, and if 88 is
very small its direction will be apppéximately that of
V. As a vector, therefore, it is approxiumately Suvfs. We

werw.dbrhudilersissotienpproximate equa tion™

v = 8u(v[v) J-JudB(v/u),
and dividing through by 8t \Y
bv _Sug: . 80
3¢ —St v +e &t »
Wi ss | 56
”*“('u' 5t +Js‘e‘)"'

So far this is abapproximation only. But notice that all
the approxiiﬁltions are such that the statements become
more and, more correct as 8t decreases in magnitude, and
become exact in the limit when 8¢ tends to zero. _All the
statements could be made exact with vanishing differences,
but.this rigid demonstration would take up rather a lot of
valiiable space. In the limit when 8t tends to zero we have

A\

\\ dv __ (1 dy .d&)v}

i~ \satia

which determines dv/dt completely if dofdt and dBfdt are
known. In general, dv/df is thus expressible in the form
{8 + jb)v, where ¢ and b are known functions of £

€ expression assumes a very simple form in the two
special cases mentioned above. In the first, since'thc
vector is constant in magnitude, do/d! is zero. Also, since
0 = i, d8fdt = w and is a constant. Therefore for @
234
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vector of constant magnitude rotating with constant
angular velocity o,

dvldt = jwv,
a vector perpendicular to v and « times as large. Geo-
metrically, this expresses the fact that the tangent to a
circle is perpendicular to the radius.  Notice that

dv . dv . 'S
i =Jjo g =)W = — W, & \)
and, in general, A\
dwvjdm = (je)m. O

For the second case, that of a vector of e:;[Qnéntially
decreasing magnitude rotating with constdnt® angular
velocity, dffdt is w as before,

and since v = tgeH, Wi -abraulibrary.org.in
dyfdt = — koge ™™ :;»—x\ﬁﬁ,

5o that ..I_dﬂ:_k. ‘
v di R

. dv wN

T'herefore g = (—&kst o)V,

and, in general, TV Lok + wf)™v.
dair &

(Notice that si s'\‘d{?/dt = (— k& + wj)v the tangent fo
the locus at v anakes with v a constant angle tan—* —w/k.
This is the reagon for the name © equiangular spiral > given
to this locus 3 -
These tywo special cases have very important applications
to altemyating current theory, and later sections will be
devo\{'\d 'to the development of these applications. The
mater must be left for the present in favour of a brief

@fcount of the companion subject of the differential

alculus, that is, the integral calculus.

116. THE INTEGRAL CALCULUS:
INDEFINITE INTEGRATION

It is rather unfortunate that the wo-rd * integration ™
is used in two different senses, but this will not matter very
much as long ‘as the twp ideas are clearly distinguished
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BASIC MATHEMATICS

right from the start. We shall take the simpler of the two
first, generally called for the sake of distinction * indefinite
integration ”, though there is in fact nothing really in-
definite about it. Integration in this sensc is simply the
inverse of differentiation. The integral with respect to #
of any given function of  is the most general finction of%
of which it is the differential coefficient. 'The integral of

J(#) with respect to x is written /N

SR A\

and its definition is P

%4
A

oy dsy = "

www.dbrdaibfangteen iof ¥ which fnlfils thig»‘giéﬂhitjon can be called

™

an integral of f{x), but the integral.ilt be taken to mean the
most general function which Mifils the definition. For
instance x+1/(z + 1} is an integral of 7, for

d(;@ff’“") )
fi_xfl—f—_l = X",

3

but the most genetal function which satisfies the con-
dition is R ,
o {“ } Fa
AN ati T 6

where Cisany constant number whatever, so that this will
be regarded as e integral of #». In general, any two
integrals of the same function can only differ by a constant,
meview of the definition given above, and the simplest

» together with an arbitrary constant, will be taken as

\\tlie integral.

So far so good. It all seems plain sailing. Any table
of differential coefficients will jmmediately furnish an
equal number of integrals. For instance, since

. At this point the reader may want to raise an agitation against this appﬂfﬂl"
violation of che mfegm’y of dyfdx, which he has been told to regard as an iﬂsepﬂfﬂp;
ty, | But the * dx ¥ under the integral sign is not, in fact, the ds from dyide
trying ta lead a separate existence, It is merely an agreed shorthand for * wit
respect to « . n textbogke use a notation which implies the separatt

2 Certai
exstence of dy and dx, but this is lisble to be misleading, and the writer has carefully
avoided it,

236



W

DIFFERENTIAL AND INTEGRAIL CALCULUS

j_:r__ €, fe“ e = &= -} C.
Again, d logxlde = 1/x,
. 1 dx _
whence ] » dx or f = logx + €,

and so en for all the standard forms of differential co-
efficient which have already been discussed. Space cannat
be spared for the cnumeration of them, but the reader
is advised to rnake himself familiar with the more important
standard forms. A
Outside the comparatively few standard Jotms, how-
ever, the difficulties begin. Differentjationss\a’compara-
tively simple matter. There is the fundamental %:rmula
to start with, and rules for combina)f\i K
to simplify its application. For ;h§s Inverse Pprocess,
however, there is practically speaking\io guide at all and no
such rules for dealing with combinations, no rules, that is to
say, which will inevitably succged: What then is there to
help ? Only inspired guesswotk. That, of course, lends a
certain fascination to the business, but its practical limita-
tions need hardly be pointed out. . .
Howcver, there are.bne or two gcnera] proposltlops which
may simplily mat@..;f little, and these we shall briefly pass
In review,

.\“'.'1017‘ A ConsTanT FACTOR
It is easy to show that a constant factor can be placed
outside.{ig'sign ol integration, that is,

\\ f ¢ flx) dx = a f ) dx,

Jar®
N\

ARTCESINL
by definition, and by the rules of differentiation

4o [y ae=aff s d

' ] ﬂx).
237
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BASIC MATHEMATICS

118, THE INTEGRATION OF THE SUM OR DIFFERENCE
or Fuxcrioxs

This is comparable with the corresponding proposition
in differentiation, and can be immediately derived there-
from. If P and Q are functions of x, then by definition s

dds [ (P+ Q) dx =P 4 Q, A
also, by the rules of differentiation, N\ -
d d d o\
&{dex:}:dex}=dfodx;tdxth‘qfa
=P :‘: Q..a j“:\\'

‘therefore

www.dbl'aulibral'y.orgﬁ;(P +Q)dx sz df‘::&Yde-
The proposition can obviously beextended to the sum or
difference of any finitt numbér of functions. As an
example, \

")

I I { I I
o == - 8
#2— a2 T oy Z g i - aJ

%

by elementary algebra® Therefore
dx Q\; RS { dx f dx

SR A U Rl

o =, {log,(x — a) — log(x + @)} -+ C
N4 I ¥ —a

K7, z_ér_zlog‘ £ Fa + G, ‘

C\j%}hg an *arbitrary constant ” of integration. This

{example also illustrates the application of the bunc_llc-of'

sticks idea to integration. Where possible, a complicated

" function should be separated out into the sum or difference

<{ y"  of a number of simpler functions.

119. CHANGING THE VARIABLE

(i) Suppose f(x) be expressible in the form Blu) (dufdx),
where u is some other function of «.

For example, sec?s/(q? — b%an?s), Letu = b tan
238
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Then dujde = b sec?x, as already shown, so that |

sect« 1 v du
at —bftanx b a® —ut dr
Now it is asy to show that 2
du \
- dx = du, N
S o) 5 dx = [ 6() O
for the R.H1.8., which we shall call F for short, is a function (\\
of a function of x, so that AR
dF _dF du A
dx ~ du dx RS
Also, by the definition of integration, \%
Therefore dFdu = $(u)- wwwsdb}’éuljbrary.org.in

dFjdx = $(u) (dugqx);}“ A, |
F= [ &) &. ;

whence, by definition,

For the above example, 3
secixdy T d—ua’x
/;12 — b“tan"{x TJ b e —ut dx
O I 1
K =[5 a—a®
) 1 a—u

N 8% ¢ (See Sec. 118
2ab log. a g (See )

N\ +u
xt\‘":_ I a-btﬂf
7 =28 g Fhianx T ©

Thus, ."\@ﬂ’ﬁd guesswork is only required to furnish the
substithtion & = & tan x, and thereafter all is plain saifing.
Thig™is characteristic of a large number of processes
‘Ofintegration,

_ {il) The subsdtution of a single letter for a group, as
in the above, seems a reasonable method of simplification.
If} some cases, however, the reverse process can be_ used
with advantage, that is, the substitution of some simple

group for the variable x,. Thus in f filx) ds, if we put
239
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x = ¢(u), then f(¥) becomes a function of the variable z,
say F(u}, and the integral becomes f Flu) dx, Now it can
be shown, much as in the previous case, that

S P ax = [ Fr & o,

and this form will be much simpler than the original if\t}’le'
substitution has been well chosen. For cxamg’lﬁ, in
Jx) = 1/4/a* —x7 letx —asinu. Then

I o

ot

Also dxfdu = g cos u, therefore N4

S
ww.dbraulibra TeETS = acosuaco's'<\. =

..\\.

\

P and R being functions of %, one of which at lcast, say £,

=ua+ 0= sin—}x?a’:—i— .
Trigonometrical substitutighs of this kind will nearly
always afford a simplification in binomial surd functions

such as 3

Vet =9 e + 7 /vVa — %,
and so on,
’IZQ:}}NTEGRATION BY PPARTS

N\ .
Another ve%seful dodge is derived from the differential
formula ()

A\ diur) dv
o TR T g
It applies to cases in which the function to be integratt‘.d
Cei\b’c put in the form

2 I=[f) de = [PR a,

is easily integrable, Suppose
fR dx = Q, that is, R = 4Q [dv.

Th
o I-——-de;—%dx.
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Now it can be shown that
~_dQ, dP
Jrto-ro-fof s

for, differentiating this equation, and remembering the
definition of an integral,

4 dPQ ap R
P =& —Ra@ Ke
which is the * differential of a product ” formula ql;éé’c‘:lﬁr
quoted al:ove, As an example, \\

fxcosxdx :fx(dsinx/dx) dx \
 vdinx _\Wgaaxunbmry.m-g.in
= xsinxy -l:-:{:os‘:x 4+ C
Or, again, : A».’;
[redi=f x(def‘/a’;x");zfa’é = xer — [
~ = xef — & + (,

So much for a brd i)u}linc of the subject of * indefinite ”
integration, Ther%ebgove formulae are practically all one
has to go on. The rest is inspired guesswork qf an intuitive
kind, but fortylately the intuitive faculty required increases
with practice.iind experience. A few examples are given
at the end.6f this section, but far more should be worked by
any Sﬁ}%(ius’ student, for integration, like genius, is nine parts
perspication to one of inspiration. Examples are casily
n}aﬁé up, and the work can be made self-checking by

'"\fl“.lﬁerentiation of the result.

) 2

ra1. DEFINITE INTEGRATION

Now we come to the more practically important of the
twa ideas associated with the word * integration ™. What
we are concerned with now is the evaluation of expressions
such as
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b {fla) + fla +8%) + fla 4 28x) fetc. . . . .

- g

x=h
Jb —8x) + f(b)} bx = 1. Z fx)8s,

0 x=a
that is, the limit when 5% tends to zero of the sum of all
terms such as f{x) 8x when x increases by steps of §x from

a lower value 2 fo an upper value &, 'S

But first, readers will probably want (o knew how, saéh
cumbersome—lo.oking expressions come into practical.politics
at all. Let Fig. 52 represent S(%) plotted agaigst x for
the range 2 to § of x. It will be assumed thafhere is no
minimb or maxi-
mumyvalue of £ {x) in
/ is\range, that is, f(x)
her decreases or -

N\

S
www,db}a uljbrary.org's.iég_

—

& ereases uniformly from
T 2\ @ to b If fix) is not
1o N\ in fact of this charac-

N\ ter the range can be
N divided up inio sub-
L A ranges in each of
e g ] N which the limitation
b <5 applies, and the follow-
O ing discussion can then
*¥ig. 52 be applied to each of
A\, these separately. Sup-
pose we requiire to calculate the area included between the
ordlna}egat aand b and the curved line representing jf{x}.
'One’jxgeth_od that suggests itself is to divide up the area
Intenw strips each of width 8x. The area of any strip,

k' as that shown in the figure, lies between that of the

. :.fshortc:r and that of the taller of the two rectangles,
..\'.gthat is, bf:tvyecn ¥3x and (y + 8)dx, and the corre-
#\\/ sponding limits of the tota] area will be the sums of these

\/ expressions for all the strips, that is, the total area will lie
between

X ey

x=b x=h
2y 0x and X (p S« -+ 3» 8x),
=g

=g
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‘the difference between these limits being

x=b x=d
X 5pox = 8x X 8y = 3x{f(b) — fla)}
z=a x=a

(since the sum of all the separate increments of y is the
difference between the ordinates at @ and &, that I,
fb) — fla) ). ‘ )

It is clear that, by making 8x sufficiently small, either
calculation will give the area required to a high degree of
accuracy. [Further, since the difference hetween the mg‘
is {f(b) — fla)}ox, which tends to zero as dx tends to zgro,
it follows that the area is given exacily by e\

N
2A\A

x=h x=b ,m.'\\
it., Zydx or i 2 RPab ulibrary org.in
Sx——r0 A=q fx—w0 x=d \ \
Ve \d

Here, then, is one way in which the expression given at
the beginning of this section will arise, iz practice. )

Again, suppose we are told that the velocity of a moving
body is known as a certain, funefion of time, say f{#), and

we are asked to calculate the distance it will travel in the
interval between the instafits £ = & and ¢ = b. There 15
no question of simply multiplying the time interval & — @
by the velocity, beca,u\é the atter is not constant. As In
the above case,, however, an approximation could be
obtained by divi&{& the interval into a large number of
smaller equal (htervals §, calculating the velocity J©
at the beginting of each interval and multiplying by o
to get the distance travelled in the short interval. Upper
and lowet/limits for the distance travelled could then be
calclated for the whole interval precisely as shown above,
andithe differcnce between these could be made as little as
désired by sufficiently decreasing 5¢. The exact result
~LWwould be, as before,

h
3

\ t=ch
i X flo
S>>0 t=d
There is, therefore, very good reason for trying to find
some means of evaluating this limit of a sum, and a
243
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combination of the ideas of the differential calculus and of
indefinite integration will show how this can be done.

Tt will be assumed that the function f{x) and is integral
are finite and continnous over the range a to § of x
Further, let F(x) be the integral of f(x), that is, f{x) is the
differential coefficient of F(x) with respect t ». The
range ¢ to b is divided into the » intervals &x, that s
néx = b — a. By definition, .

Fix 4+ 8x) - - Flx - \\
sxil-o' i _..._3_3_.__ (=) = fix). O

%

Therefore for any value of 8x greater than zerp.iflnlir'iagnitudc,
Flx -1 8x) — F(x A\
Fle -3;2 — IGO0 + 4
www.dbraulibrary.org.imn

where % is a quantity which tends to.zero when 8x tends to
zero, 'This can be written A

F(x 4 85) — F(x) &3(x)8x + hox.

By hypothesis, this is true for'all values of x between g and &,
whence ™

Fla + b8 Fla) = f(a)8x + hydx,
Fla + 282} S ¥(a + 8x) = fla + 3s)8x + hybx,
Fla + 383 3 Fla + 23x) = fla <+ 28x)8x + fhgdx,
dior etc. etc.
F(B85) — F(b — 28x) = f(b — 285)8x + h,ad%,

N F(b) — F(b — dx) = f{b — 3x)8x + hadx.
Bﬁa}ciaition,
Nl F(b) — F(a) = 5 fx)on -+ 8¢ Dk
:"\';:; Therefore e k ﬂzi

QO ax{{;:i%;‘?(x) 5% = F(b) — F{a) — R,

where

R =l 5x3ha
fr—ra =T
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Now the quantities # are finite by hypothesis. Let 2
be the largest value reached by any of them for any value
of 8¢ between 8x and zero. Then

185 Z hal 3 n Sx ki
n=1

(the vertical strokes mean that magnitude only is being
considered, and % means * not greater than ). There-
fore, since néx = & — a, A
{ \
H= y ’\
Vit SxZha| | It (b — @)k = |(b —a) I Al =0 U
fx—>0 m=r°x Ex—>o an—>o (n:"
since the limit of all the A quantities is zero when 3% tends
to zero. Therefore, finally, since R is zero, O
x=h—Bx www.dhpatlibrary org.in

S fee = it Bf)8x = F(b), < ¥la)

A0 N==g Bx—»o &=a

The expression on the left is usually si.ir}ltten in the more
compact form O

fjf (x)ab‘

and is called the © dcﬁnjtcjﬁfégral » (or, in practice, just

** the integral ) of functien * with respect to ¥ from & to b.
[Chus we have 8

R ‘.m’\
f\f{”) dx = F(b) — Fl(a),
where F(x) is,the integral of f(x) with respect to % in the
first sense ofithe word, :

. x'\". L ™
that 15,2"\::’ F(x) _j Slx) dx. ‘
In ,th‘bgt':tual calculation of definite integrals, F(6) — F(a)
Is ritten
NS b
~O [Fn],

) 3
V' 50 we have

SR de= [ ) ax] = [F(x)]i%F(b) — F(a).

As an example,
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BASIC MATHEMATICS

f:ix{x = [log x]‘= log & — log a = log (&/a).

Notice that there is no need to include the arbitrary
constant of integration in F(x), for it would automatically

disappear in taking the difference of the limiting values.
Notice, further, that

St d O\

is not, in general, a function of », but is a fungtien of the
limits @ and . It will only be a function of guf %, or any
termn depending on x, appears in the limits/)y

"
122. THE MEAK VALUE OF A JUNCTION

Another important application ofsdefinite integration i
%'on of the mean valge of a function over 2

certain range of the variable. s\@n\terms of area, the meat
value of the function is the heighit of the rectangle of base
(b — a) the area of which j§ equal to that enclosed by the
curve ¥ = f{x} and the opdinates at a and 6. In terms of
the variable velocity example given above, it would mean
the equivalent constdnt velocity, equivalent in the sense
that the moving body would travel the same distance in
the same time.. \Ih general terms, therefore, the definition
of ym, the edn value of f(x) over the range a to & of %, 15

[ ] *
(é;‘j.a)}’m :‘/;f(x} dx, OF ym = E:I_-Ef.f(x) dx.

Twe imporiant special cases are (i) the mean value f)f
awalternating current { = § sin w! over a period (that is,

\";5:1%{&:), and (i) the mean value of the square of the same -
O\

ternating current over the same period (see Exaraples,
page 252).

123. PERIODIC FukcTioNs AND FOURIER'S THEOREM

No account of the basic mathematical ideas of im-
portance in radioc would be complete without some
mention of Fourier’s Theorem—one of the most beautiful
and uscful of all the great mathematical discoveries.
Unfortunately, it is, mathematically speaking, rather toe
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difficult for 2 work as elementary as this, and it cannot,
therefore, be dealt with as a mathematical subject, but we
have now covered enough of the ideas involved to be able
at least to describe the theorem, and show its particular
usefulness in electrical theory.

First, it will be well to point out that is is »of a theorem
ahout periedic functions, for it is often so presented as to
give that impression. However, it is chiefly in con- ,
nection with periodic functions of time that it comes intg
electrical theory, and it will be presented in that form. "\~

A periodic function of time, f{f), is such that fgn}( afl

values of ¢ \

fa+T) = fi), L0
where 7 is a constant. If 7 is the smallet eonstant for
which this is true, it is called the peridd" ek ey 8. In
of the function. Fig. 53 shows two cxamples of such a
function, N\

The simple sine wave f{¢) = Ay (et + 8) is itself a
periodic function, with o

period ewfw, and the
essence of Fourler’s
Theorem is that any
periodic function, subs{*
Ject to certain stipulas,
tions about finit ue
and continuity, which
are, in fact,{ always
complied wittvby func- f(t)r
tions which” represent T
any real ‘natural, peri-
odic \phenomena, can
beScepresented as an
sififinite sum of simple Fig. 53

1o Y,
R Y

I
i~

~\ine functions, that is,

N\

f(t) = 4y + 4, sin (wt + 0;) + Ay sin(zed + 0y
+ Ay sin (3wt + 03) + €t ad inf.,
where w = 2m/T, and Ayd, 44, 810509 €€ 2T€ constants.

. . » for a
In such a series, 4, is called “ the constant term f0247
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sufficiently obvious reason, A, sin (w! + 0, is called *the
fundamental », and the next, and succeeding terms are
called the 2nd, grd, etc.,, “* harmonics 7. ]

As already stated, we cannot here demonstrate this
expansion, or derive it from first principles, but we can at
least show how to determine the constants, assuming thé™\
expansion to be valid,

N
Consider first the average value of the function over)a
peried, that is, O

T O
I ) dt. N
/7o
H the series truly represents the function, tijen the average

value of the series will be the same as thie average value of
the function. But the average value of the series is 4,

w’ww,dbsindicblt&my-avﬁﬂ{ige value of all th\e;}:wthcr terms is zero.

Therefore O\
I Ve \
4 = ﬁfm di,

(In most radio applicationsy But not always, 4, will be zero,
that is, the finction Wil be symmetrical in area about

€ axis,) N

The rest of the pfdeess is somewhat analogous to using a
strobascope to ana%rse a complex rotating system. Multiply
the function n@the series by sin wf, and again cquate the
average values of the two. Then by cos wl, and d_O the
same.  Ther by sin 2wl, and by cos awt, Better still, do
the whaléjob in one 80 (or rather, two goes) by multiplying
by sin bt and cos nawy, In calculating the average values
of the series when so multiplied, it will be necessary to

gi{{nOnstratf: the following results »—
2 S

1 7 i 7

T J sin® net di = ocoﬂ nwt di = 4,
and

I et .

T/;mn mwtsin nwt df = o

I r
T 608 Mt cos nmwt dt — 0,
1]
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¥ }(‘!’,
o J sin net cos mat dt = o,

where m and = are any unegual positive whole numbers.

These results are covered by the preceding section, and
are included in the examples at the end of this chapter.
With this outline for guidance, the reader should have no
difficulty in showing that

N

An cos B = ;—j{;}(t) sin newt 4t \\' \)

and An sin 0 = ;ﬁ}(z) cos fict db "'f N

Finaily, assuming for the moment that thesc;\&eﬁnitc
integrals can be evaluated, and calling them§x and Ca
for short, wwy{lbl‘aulibrary,org,jn
from Ay cosn = Sa, .\\ .
and Ausin bn = oy \S,
we get Aﬂ2 - Sgﬂs ;*“’C’F:
and tan &a %Qﬂysﬂ,
50 that Ay and 8y, n = ', 2, § etc., are known.

The integrals can, in fact, 'be evaluated in _va.rious ways.
It may be, for examplé,\that f{2) Is itself a simple, known
function of ¢, so that the integrals can be calculated.  In
general, however) the integrals can be cvaluated by
graphical, or imilar, computational methods. Space
cannot be spa\i:’e.d for a detailed description of any of th?sc,
which are, fipfeover, very fully covered by many existing
texthooky fincidentally, in some twenty years of work in
radiﬂ\xéé,éarch the writer has never had occasion to use any
of them, and he rather suspects that they are not, 1 fact,
very,thuch used outside class rooms.  Where 1t 18 necessary
t6 “measure the °° harmonic content’ of complex waves,
there are various kinds of electrical and mechanical
instruments for doing so—but this is rather beyond cur
Present scope). )
The really important point for our present purposes 1s
that any periodic alternating current OF voltage that is
likely to be met with in practice can, as shown above, be
249
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represented as a sum of a series of simple sine waves—
theoretically an infinite series, but in many cases a com-
paratively small number of terms will give a very close
approximation. In consequence, circuit calculations with
such irregular waves can be carried out almost as simply a3
for pure sine waves, and the behaviour of circuits ‘ahd
apparatus to such complex kinds of excitation qan\!:rc
understood and mastered in a way that would gtherwise
be impossible. O

Here ends the account of the mathematicalNptindations
of alternating current analysis. The refhgining chap-
ter will be devoted entirely to speific applications
to actual problems. The fundamenfal\ideas have been
presented in a very condensed fdstn, but the ncces-

o db %1%#}1};@} , ,space available May’ precluded a very

sition.  This vergJirhitation can, however,
be turned to good account by any serious student of the sub-
Ject, who will find in the development of the detail the best
possible means of familiari§ing himself with the important
fundamental ideas. %%

ad
SN g
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Examples XV
Given that v «» = peboos{wt +) find dv/de

.

.

3

and 4?y{d?2 in terms of v and a vector operator. Also
find {dv{df) - » and (d2v/di?) - v
Find the following integrals :—
dx ¢\
pry Ke)
o flax 4 b) dx 'S ’g,
Ii. f o d 3\
e f \\\
ili. f sec x tan x dx, \
. dx www«{{h}'auhbl ary.org.in
iv, fa'*z"'?;'a (put ¥ = @ tan 9),( ~}\v
v. f_‘-f" (put & =u). |
Intcgratc by parts i— .:’ \ N
L x? logc X, - ’3 -
ii. (]‘Ogcx) 29 4 ‘“

il tan—1 x. .S\
/

4 Show that : _‘\"\

f'.f@i’ffx = — [Fx) &=

' sl

\\ibff(x) ds = [ fis) de -+ [ F(a) d.

s

3.; “Find the value of

./

i. [sin 049,
1 \/;311'1

R
i. /'sin 648,
I} /;Sin

2
i, f sin8 d8.
0
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Remember that sin®6 = } (1 - cos 26).

2
v. fsin mb sin nf 8, m=/"=n,
9

Der
v, fsin m cos nf df, m —=n.
L)

6. Show that the curve x2 4 2 — 4% is a circle. Find
the area included between the x axis and thatpart
of the curve for which 5 is positive, and hcoke show
that the area of the whole figure is wa2. K )

7. A periodic function f£{#) is defined by t@}o\iloxﬁng —
from ¢ = o to 7 = Ty, S} = «Nonst,),

v vt qpraulibréFfTRIn 7 1o 4 — T S~ 4

Find the Fourier series for PO

8. Show that if f{f) = mfit NE 7:), S{t) has no even
bharmonics, o 2

9. Given that f£,(t) <2¥, (¢ + 1),
and Sl = fo(t + T),

and '\\a } = fl(t) fz(t),
is F(z) j@}eriodic function ? If s, what is its period ?
<&~
x;&"'
\©°
O

252
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THE APPLICATION OF MATHEMATICAL
IDEAS TO RADIO

124. RLECTRIC OSCILLATIONS AND WAVES O\

HE remainder of this book will be devoted to showing()
how the basic mathematical ideas so far described can
be applied to the description and analysis of the glestrie

waves, the apparatus, and the circuits used in thg.‘\vé.rious
applications of radio-frequency electricity. For {Higpurpose
it will be necessary to assume that the readestodalasdie-9lorg in
is acquiring elsewhere, a sufficient kn_owlc;:!g}~ of the corre-
sponding basic electrical ideas, for in.the’limited space
available it will only be possible ta give these a bare
minimum of description—just enough to link them up
with the mathematical symbolsSahd methods involved.
Also, of course, from so vast atfield of application it will
only be possible to select a fewielementary but fund.amcntal
examples, but it is hopedathat these will serve to lustrate
the way in which the méthematical technique is used over
the whole ficld. , (&) )

First we will consider some simple types of electric waves,
represented in thejr simplest form by alternating currents
n wires, X \

The simplesk kind of alternating current
be rﬂprf?sélgl}td as a pure sine or cosine

that is\8J
Q

-~ The angle ¢ = wt - § (radians i3 called the * phase ”

Of the oscillation (the angle @ is frequently so ca eltli,

Vbut in fact it is a particular value of the phase—the

V";lluﬁ when t == 0. It is more suitably called the initial
phase),

We know already that the period T and frequency Fof

the oscillating current are given by

is that which can
function of time,

i —1cos ¢ =4 cos (wt+ 0)-
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but it is important to notice that Jfcan also be expressed as
1 dp
It A

and that, in Consequence
¢=f2wfdé=2nﬂ+e_—_w:+6. D)

The definition of frequency as 1/27 times the ratc.ofc\hange
of phase is a useful generalisation, because it leads to the
idea of * instantaneous frequency » as applieds to certain
important cases where the frequency is not, sgrictly speaking,
a constant, but is a slowly varying functionof time.

Suppose, for example, that the © insrz{lj;alleous frequency™

www.dbxgikienay.org.in o\

S =fol1 + msin p1), x\\

L2 — e+ msine),

Then

a7 df
and

é = anf, f{1+ m sin pt) dt
= 27t -% cos pt) + 6,

p
&\

so that \\ -
i &3 cos (wyt —g wy cos pt + 8), wy = 27fy,

which fradio students will recognise as what is called
a “ figgtiency-modulated * current.

Réturning now to the original single-frequency current,
's'gpose this to be flowing in a pair of lines as shown in
wg.zFig. 54. The current has the same phase at all points
¢\ along the line; but it need not have. For example, &
"\ might be a simple function of x, the distance along the

N\ line, say, —px, that is, uniformly decreasing. Then

=1 cos (wt — Bx).

The current has the same amplitude 7 all along the line,
but, because of the uniformly dccreasing phase, its in-
stantanecus value will be as shown in Fig. 55. At a
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0"\”
A\

short time 8¢ later it willB&vas shown by the dotted line.
If one could actually seg'the current, say, as a luminous
haze round the wiredyfed for positive and blue for negative,
the appearance wou?&‘ be somewhat as in Fig. 56, and the
whole picture_weull seem to be streaming away to the
right (in fact,‘of“Course, there is nothing streaming away
to the righty)me thing, that is. It is a state or condition
which, © ngovés *, that is, is acquired by successive parts
of the lingat successive instants).
WhAb is the velocity of the wave ? Is it dsjdt? No,
bfggal_lse x is simply the distance along the line and 13 not a
“Minetion of ; but we can fix on some point £, which 1s
ssumed to move along the line at such a rate that the
Current at the point P is always the same in magnl tude,
at s, is always at the same phase. If %o be distance of
this point at the instant {, then '

wlf — ﬁxo == const = ¢,
255
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that is, Bry = wt — &,
xo == _an__-_?S,

% w

dt — g

and this, obviously, is the rate at which the wave tra\{els\
along the lines. The distance between two SUCCESBLVE
points such as Pand P’ in Fig. 55, at which the curcefiihas
the same phase, is called the wavelength, A, \J

N/
\

that is, if - wf — Bx = @, N
ol —B(x -+ ) =¢ — an, O
that Is, — B = — ag, O

I

211'/)1.

or i 18
www dbrg by R e refore be written o\

?

S

QY

or

i=1 co‘é\ tar — omx{A),

] §:’7y{:os 2 (ff — JL'JM)-
Thus, the expression Q \\
odp =1 cos (wt — Bx)
epresents a current<fave travelling in the posilive #

direction, Similarly,

~ iz =% cos (wt + fx)

e L . ;o
represents a @\Yw travelling in the opposite or negative x
direction,

If both dukrents are made to flow in the line at the same

time, thedinstantaneoys value of the current will be the
sum of\the two (nof the difference), that is,

(N =11 44y = f{cos (wt — Bx) + cos (wt + Bx)}

O =2icos wicos Br (see page 192)
N = {2% cos fx} cos wt.
‘)

In this case, the phasc {@f) is constant all the way along the

line.  This time it is the amplitude which varies along
the line. At some instant ¢ the instantaneous value of the
current would, for example, be asin F 1g. 57, and at a short
time & later, as shown by the dotted line. The haze-
cloud picture that we imagined for the travelling wave
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O\
. O
would, in this casc, at a given moment, look as in Fig. 56,
but this time there would not appear to be any sideways
travel, in either direction. Instead, the apparent’ move-
ment would be all up and down as the haze-clopdsiwaxed
and waned, all disappearing complet‘él‘?“hf’.cemfhlﬂmﬁéy org.in
wice every cycle (when cos wt = 0 and these j8 no current
anywhere) and re-emerging having chax%‘e' colour mean-
while, red to hlue and blue to red. N
In Fig. 57, the points Ny, Ny, N afe clearly those for
which cos B — o, that is, Bx = w]ﬁ,;;gﬂ'jz, gwf2, or X = A4,
344, 5M{4, so that the points art half a wavelength apart.
“}eY are called nodes, ™
The two kinds of waves N

Fig. 57

i z4&cos (wt — Px)
)
and &322 1 cos fx cos wf

are called respeCtively progressive and stationary waves.
Both play a latg'e part in radio engineering.

125. Tl;l&:’ifuxnm-n;xmr. Laws oF CURRENT NETWORKS
Thewliole theory of electric current networks, whatever
e e nature of the conducting elements of the networ]l;s
sraf'the currents flowing in them, is based on two remar(i
'\iablc generalisations known as Kirchhoff’s first and_secortlic
V1aws—remarkable because of their almost axioma
Simplicity and the wealth of information and deduction
ivable from their application.
he first law.—the algebraic sum of the cur
fheet at any point in a network of conductors 33 Zero.
9

e currents which
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Notice the word “algebraic »,
which here, as always, means that
sigh must be taken into account. Tis
By ““sign’’ is meant the scnse of the
current relative to the point con-

: 4

sidered.  ‘The usual convention in i is
this matter is that a current will be _
reckoned positive if it is flowing 11 AN
towards the point, and ucgative if il A,
is flowing away from the point. S

Thus the application of the law to

the element of a network shown in N

Fig. 58 leads to the equation S
oty iy — iy, = gl

Fress

worw.dbratl Jép;l—’}’g_qsﬁg‘ﬁ ithe reader, “ how can Riell, in the case of a

really complicated network, whichvagdy the currents are
flowing 2 The answer is : You'¢annot, but it docs not
matter, because the combinafignof corrcet analysis with
known data (such as the natute and disposition of the
acting clectromotive force$)s will automatically confirm
or correct the assigned disactions .  Thus, if in the above
example the current ¢\ ¥ in fact flowing away from the
point, its evaluation Will lead to a negative number, —10,
for instance, showing that it is a
current of magnitude 10 flowing in
~a direction opposite to that in-
dicated.

An alternative and preferable
manner of representing the flow of
current in a network is that illus-
trated in Fig. 5q, wherc the actual
currents are regarded as due (o 'thC
superposition of the circuital
currents shown. Thus the current

Fig. 59 in PR is 4y, in RQ {,, and in RS
(iy~1d,). This form of representa-
tion saves the writing of several current eguations, for it
actually assumes and embodies the first law. Thesum '?f
the currents meeting at the point R, for instance, is
8 — iy — (i, — i), that i3, o.
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Physically, the law states that there is no accumulation
of clectriciiy at any meeting point of conductors in a net-
work., In aciual fact, there will be local accumulations of
clectricity for an exceedingly short period after a circuit
has been closed, just as water released into a system of
pipes will first fill up the pipes belore settling down to a
steady flow, but, in general, this initial period will be
negligibly short in duration, and the law applies exactly to
the final steady state.

KirchhoiT’s second law relates to the sum of the e.m.fs 4

and the counter-c.m.fs or potential drops in a closed cireuity
Consider, for instance, the passagc of a current of magnitiide )
 through a resistance R ohms, illustrated in Fig. 6a. OBy
Ohm’s Law, a knowledge of which is assumed, Hi€ mpagni-
tude of the potential drop betweenwihe. 4
s iR volts, and the current flows * downhill ’:,«Qsonc would
expect it to, That is, ¢ is at a higher p(’{téntial than &.
X 3

Thus, if the direction of the em.f. AN+

be taken aspositive, the appropriate ___E,\“M.__
sign to atiribute to the potential %% P —
difference (R is ncgative. Comsy Fig. 60

versely, any voltage in the clesed oo :
circuit containing R which. wold tend to maintain the
current in the same—that{g, positivc—dircction. can reason-
ably be given a positive sign. Allocating signs in this
TANNCr, one can forhl\tﬁe algebralc sum of all tl‘_le e.m.f.,s
and voltage dropg™in any closed circuit, and Kirchhoff’s
second law stateé'tﬁat this sum is zero. There ‘shc'mld be
no difliculty {in~ appreciating the physical significance
of the seqQt “law, for it means no more than this—
that a mapn who sets out from his home on a round-
ehout fowtney up hill and down dale, and then comes
_hOm.@ again, must of necessity in the course of his wander-
ing3\have gone uphill and downhill to exactly the same
-Xent, since he has finished up at the level from which he
Harted. o

Applying the law by way of illustration to the circuut
shown In Fig. 61, which represents a battery of emf. ¢
volts and internal resistance R, chms supplying current to 2

resistance R ohms, we have
259
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4 +fu -+ g == Q,
that is, ¢ — iRy —iR=o0
or i =¢ef(Ry + R).

In the case of a
n varying current, ores
rl example, the hlghj
| frequency sIne-kave
alternating cuprent of
I-—— radio, othey “¥hack
e.amn.fis ', drapposing
voltages/Pwill come
intowplay n addiiion

Fig. 61 to \those duc to the
i 1 f the con-

ibrary.ocg.in resistances o ]
Www‘dbd'ﬁggbré HvolSed. It must be assufied that these ideas

are already familiar to the reade

tbuf a brief statement of
thern will be given for the sake of\Cer

f\Completencss.

126, INBUCTANCE
A pure inductance oppdses to a varying current ¢ a back
€-1Lf, ¢; proportional teithe rate of change of thc current,
that is, proportionalto dijdt. 'The unit of inductance s
so chosen that the. hack e.m.f, in volis is —L{dijdt), L being
the inductance gn henries, A negative sign is attributed
to it for the & rezson as in the case of 5 pure resistance,

M Izy. CAPACITANCE
A pure capacitance in a cireujt carrying a varying
curtenti (sce Fig. 62) will oppose to the carvent a back
&,/ proportional 1o’ the quantity of clectricity stored in
thevcondenser. The unit of capacilance is so chosen th_at
Sthis back c.m.f. in volts is g/C, C being the capacitance in
) farads, and 7 the quantity of electricity in coulombs stored

\ ) on the positive eclectrode pf the condenser, that is, lcaving
the matter of sign for the present

lec) = 7/C.

Now, since the rate of change of ¢ (that s, dg/dt) is the rate of
26o
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flow of electricity along the conductor, that is, { amperes

{or i coulombs per sec), we have
i = dg/dt.

Therefore

del dyrgy__14dg ¢
di _E(_C)_C‘dt"(}'

Since the direction of thc potential difference e relative

to that of the current is such as to oppose the current, a{
negative sign is attributed to it in the above equation,

giving
+?€c - (iec _ g '\\
=g} di ¢ O
[A— ) .
Fig. 62 www.d{raulibl'ary.ot'g.in

128, VECToRiAL REPRESENTATION' OF Back
VOLTAGES  \N(

It was shown in Scction 85 that a\sine-wave alternating

current can be represented in th&orm
i =4%0s wf

where i is a vector of constditt magnitude i, rotating with
constant angular velocitfy e and where » is a constant
unit vector of refereneé\parallel to the bottom edge of the
paper (in the wrigef’s Jopinion, this form of statement 18
preferable to the m}&c usual description of the instantaneous
value of the cutrent as the  projection ™ of the rotating
vector on a #¥ch time axis, since it permits the relationship
between thewector and the current to be stated as an exact
equatiomnas above). . .

(), Much a current flows through a resistance R ohms,
the Back voltage ¢, is given, as already shown, by
Q. ¢ = — Riy
& 1 . + . - .
\, Jand since ¢, is thus a simple multiple of i it will of necessity
be a sinc-wave alternating potential difference of tlzlc sbamc
frequency as 4, and can therefore be rcgresentr_z by ﬁ
rotating vector €, in the same mannet. Expressing hot
the current and the back voltage in vector form, we have

ey = — Riiv) = — Ri»v.
261
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'This can be put in the form
{eg - Ri) v = o,

Since this is true at every instant, it follows thatlt}w.\-’ector
{éx + Ri) is cither zcro at every instant or clse is pers
pendicuiar to v at cvery instant.  The second conditionss

obviously not fulfilled, Therefore p ’\t\”
€ + Ri=o0, 0re, — - Ri X {;}\

This shows that the vector representing e is ff"lfi‘mt’-s 1m

magnitude and opposite 1o it in direction, aéin Iig. 63.
{6) For the back e.m.f generated a :

. . eﬁ,= -1 1 .

In a pure inductance I we have -

3 \ Fig. 63
www.dbraulibrary org.in £y == “L(dz,/d;‘),:\ g,

&
and since the differential cocfliciény of a sinc wave is a sine
wave (or a cosine wave, which EOmes to the same thing)
of the same frequency it folldws that €, can also he repre-
sented by a rotating vector Ofthe samc angular velocity as i
Hence we have the scalar-product equation

ar'];R: — Lgr(l_.p)_
N dt

. A .
Now it is easy:&ﬁ.s,ﬁow that as v is a constant vector

c " e 4
PR S | ]
\ ¥/
X:\\”
)
N\
A . e~ = i
™3 e, =-wili ¢=Jwe
v o L »
Fig. 64 Fig. 65

26bg
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Hew di
dif-w) _dl

dt T dt
Further, it has been shown {see Section 115}, that for a
vector of this character,

difd: = wyji. ~
Tlerctore \
e, v = — ajli-v ’.\:\’
whence, as in case (a), €, = — «jli The relatim};:}

between the vectors e, and i is therefore as shown in Fig: 6;
(¢) With the above two cxamples, the reader shou'ld:}}ave
no difliculty in showing that the vector reprosentlng the

back e.m.l. duc to a condenser of capacity CJg\given by
) . www.dbraglibrary.org.in
wig, — — IC, e \d
that is, RS
e, = - ifaiC = jilaCED
This is illustrated in Fig. 65, o)+

R

129, THE CHARACTERISTICSWAND BEHAVIOUR OF AN
Oscrriagfory CIRCUIT

The circuit shown ‘Igi’:i‘ig. 66 will be recognised at once
by all sindents of €Adio as probably the most important
single circuit in Phe whole subject. Tt will now be shown
that by means of the mathematical ideas ‘alrcady described,
we can find €x¢t answers to such questions as these —

1. Wh t;}swthe nature and magnitude of t_hc current
PrOduck@..m the circuit by a sine-wave alternating electro-
motis,ﬁé\force 3 How does it depend on the frequency a;nd
onfhe magnitudes of the ciccnit constants, L, G, and R :
\.2. What is meant by the * resonance »* of such a circuit ?

~

N 3. What is the magnitude of the POtf‘:mj.al d'lﬁ‘eifncc

across the inductance when the circuit .15. tun;? ®
resonance ? How does this depend on the resistance :

4. What is the distribution in space and time of the

electrical energy in the circuit ? )
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5. Why is it called an oscillatory circuit ?

It was shown in Section 86 that Kirchhoff’s law relating
to the zero sum of currents meeting at a point in 2 network
is equally true of the rotating vectors which can be used to
represent any such set of alternating currents of the same
frequency. In precisely the same way it can be shown that
Kirchhoff’s secand law, referring to the sum of the voltages
round a closed circuit applies equally to the vegfors
representing such voltages, Applying this sccond lay® to
the circuit shown in Fig. 66, gives at once thg wector

A equation »
v 5 D
i e + e, +ert e, = O.
. e S\ On the ingtawt of closing the
www.db brary.org. | L8 circuit CE;rQ%Lh transient phen-
A omena willoccur due to the fact
thaty¥io) system of finite mass
Qo {anf inductance is the electrt-
i cal, ‘cquivalent of mcchanical
iz. N

wpiass) can pass instantaneously
from one equilibrium condition to another. This aspect of
the matter will be considered more fully later on. When a
steady state has beef veached {gencrally in a fraction of a
second) the currqm,\ﬂowing in the circuit will be of the same
character and feéquency as the e.m.f. since no other than
a current of this character can give rise to back e.m-L.s
which will\exactly balance the driving e.m.f. at every
instant N\ *Pherefore, assuming the e.am.f. to be

O

\\‘ 8 v =¢cos wl,
N\

& .
\the current will be of the same frequency 2=, and can thus
3 ooy

be represented by a vector 1 of constant magnitude 7 and
constant angular velocity . The expressions already
determined for the back e.m.f.s can therefore be substituted
at once in the equation, giving

e ~Ri ~joli— 1. o
JulC
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that is,
. I .
(B +joL +j&¥c) i—e,
; RS
or {R +; (wL—-ac)fx—e. N
« It will be convenient to put the single symbol X for the \
quantity {wl -~ 1fe(), that is, SO\
(R+jX)i=ce, o
. e \ >
or 1 =- . AN
(R + j&) A\

This is the complete solution for the * steadydstate ”
¢ alternating current in the circuit, and for mestpractical
' purposes it iy the best way of reprew@g%aulmﬁﬁaﬁ rg.in
most modern radio engineers habitually wepk in terms o
such rotating vectors and associated aector operators,
without converting back to the sealar instantaneous
| wvalues at all; but for the present educational purpose it
 will be wcll to complete the story i this respect.
In the first place, the “ impedakee operator” R + jX can
(see Section g6) be expressed,inithe form

R +}§ ‘-_‘“ZEM:
where ,:\"’X = R2 + X3,
and N7 ¢ =tan-1 X/R.
Then “, j—_%

< <&’

Now, as | ’re‘ady explained, the effect of the operator
& is ;cr\ztivide the magnit;,ldc of its operand, & by Z,
and to ﬁ\xa‘tc it through an angle — ¢. Thercfore, since

W\

A\ e -v=2~¢cos wl
N s
C N I by = 2 t — ).
QO Zo e v = 5cos (wt — )
~_ Therefore the instantancous value of 7, whichis1 -,
1s given by
. . _ 1 . _ _é i —
i gers = & oo =),

abs
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where L = \/}é'é_+'){_2
= /\/RZ (CUL— (,‘,.'i R

and the phase angle ¢ is given by
wl — 1f wC I\
Here, then, is one form of answer to the fisst of _the

questions listed on page 265 ; but another form mayalso Be
useful.  Since A\

I I R X SO

Rx~ RH X R—ix 4

R ~;X R . \1{:

TRY . Xz zz 4 X2

tan ¢ ==

»wiwr dbraulibrary.org.in R
i=2 g _ ;&
z:® »cfi\

therefore I =1p= el —
At

“

R
=z¢ 8603*0}? + Zzesm wl. B

Ve (;e

,‘

This exhibits s~
the current as the \“\
sum of two compd )
ponents of wh
one is in p‘hase
with  thel/ ) m.f
and the pther Is
go°® Qut 0[' phasc

t\lm In “quad-

_rat * with the
£ —e=gpie, 1€,
w\i;\z Onc advantage
/ of the wvector
method of an-
alysis is the ease 3
with which the
results can  be
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"Jiftorial form. Thus all the vector guantities
1 the above calculation are as shown in Fig. 67.

shown 1
mvolved

130. Tt TMPEDANCE OOPERATOR

11

Cilm: operator group (R +jX) is known as the *im-
pedance operator ”  (now irequently abbreviated, in
conversation at least, to ** impedance ') of the circuit, and

the angle ¢ — tan~! X/R is called the phase angle of the Ko N
1mpedax1}r.:e. R and _X ave called the resistive and reactivess K
components of the impedance. In general, the relation ™

{}getwccn 'i_fa_t: current and em.f. vectors for any singley
rf?qllienc_}-“ circuit, however complicated, will be an operator
of the form (R -+ jX), since any combination."‘o’?f such

operators can ultimately be reduced v siinhrbpesatoprg.in

of this kind, In such cascs, the R and X tezms yespectively
will often he called the resistive and reactive” components,
_even though they may be composite aiid complicated in
(Vstructure, and the
“ resistive  compon-
ent may, for ex-
ample,  contain
terms other than
pure resistances.
In this connec-
tion, by the way,
it should be noted
that the cireuit in
Fig. 66 shows the
resistance as  a
separate _ circuit
element. In most
N practical cases an
S ) oscillatory or
- tuned circuit of
this kind consists
simply of a coil
and a condcnser,
8 and the resistance
Fig. 68 involved is chiefly
267
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that of the coil, and is, as it were, disiributed along
the length of the wire making up the coll. It may be
taken as a fact of experience that, at any given fre-
quency, such an item will behave as if it consisted of
a pure inductance in series with a pure resistance (thiss,
will, at least, be very nearly true for frequencies gt
too near the so-called natural frequency of the €00
but this is taking us rather far from our iruwtediate
object). L >
Returning to the impedance operator R £, where
X = (oL — 1fw(), it is important to noticé At this also
lends itself to pictorial representatiogeThe accepted
convention for this purpase is illustratedinn Fig. 68. It is
clearly equivalent to drawing the vestdr (R 4 jX)», where

wwwr.d bredsi Bherggnggdnunit vector of relerdnoe, but as long as it is

always horne in mind that R e ij\ir‘s'not itself’a vector, but
aNeCtor operator, there is no
Jneed to include the symbol
&NV in the diagram.

N\ This diagram enables us to
see  very clearly what will
happen if everything in the
system is kept constant except
the capacitance of the con-
denser, which is shown in the
circuit diagram as variable.
Clearly the component 1/feC
will vary in length as € is
varied, and point P, which
is the termination of the
operator Z, will move up and
down the line 4B. The line
AR is called the locus of &
for wvariation of €. Also,
when X =0, P coincides
with N, and & = R, and thus
reaches a minimum value.
Under these conditions, ¢
reaches a maximum value
Fig. 69 and is equal to ¢/R, so that
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co8 wf.

I =

b o

This is part of the answer to the second question on
page 203. Resonance occurs when the condenser 1s
adjusted so that X == o, that is,
wl = 1/wC, .
ur w20 =1, "\...\

and the current then reaches a maximum value given kg)k)
i = ¢/R, and comes into phase with e. N

The brightest readers will alicady have seen wii, this
is only pari of the answer to the second questiony “They
will have noticed that if everythin,, is kept constant except
w, the locus of 2 will be the same siraight lin ufjlﬁ'iiagw‘.%rg. in
& =0 is also the condition for resonances respect “t0
variation of frequency (in practice thiswill be very nearly
true, but not exacily, becausc R will ¥ary also as frequency
is varied, though not nearly as rapitdly as X. However,
this is rather outside our presentscope. Itisjusta cau_tmn).

Notice, by the way, the speeiah cases when C is adjusted
as shown in Fig. 6g so thatek, — + R and X, = — K.
Under these conditions ¢re= + 45° and, from the property
of right-angled trianglesy\ [X| = /2 R, so that

RN
::\ ‘ém Ccos (wf -+ ’”/4);

which is 1/ \/é';{iﬁics the resonance value. Radio stu_dc'nts
will recounise’this as the basis of the reactance-variation
method of fmeasuring radio-frequency resistance, for

1
“‘\'\ wl. — ‘Uﬁl =R,
ALH wl — - — R,
3 wca
Vivhich lead to c
1 &
R = E; ‘cv_z,
ol 20
or _.IT = S-_Cj

26g
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where 8C is written for €y — C,, and ( is thie resonance
value given by w2lC = 1,

Before leaving this rescnance part of the story, we shall
find the answer to the third question. At resonance

. e N\
1 —_— 'R, . \
Therefore ¢ \A
ey ﬁl _ wl, ‘\ ’
é - J? e J R 3 ) “,} w
e; | il AN 3
or él = 5 ,,,'\"’.

This quantity expresses the maggification 7 of the
em.f, ¢ into a large potential differen &Y€, by menns of the
www dbrasdibIAEX- B, and is therefore A Important practical
characteristic of the coil. IndegdNit is a measurc of the
* goodness > of the coil for s urposes, and is so used.
It is commonly called the Qufaetor, or, colloguially, “ the
7. Since, at resonance,cwll = 1/w(,

*

wL';{‘:I_ 1 T
RN WCR TR ’\/C'

These alternatived@xpressions involve ¢ as well, and are

better described(@$ the  of the circuit. Note, by the way,

that if we include the resistance in the coil—as in practice
we must—the ratio for the coil takes the form

NOVE T I _ oL R\

O TR TR U )
AS)Shown on page 148, this can be expressed approx-

jf}dtcly as
»:’; wl, N Re
o & (1 G-
o \¥;

V In general, wL/R will be of the order 100, so tha.

+ R w2L? is of the order 1074, and can be neglected corm-
pared with 1. But do not fall into the trap of assuming
that R can always be neglected in this way. We have
already seen that, at resonance, X is the most important term
in the whole system,
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131. FREE (JSCILLATION

Instead of assuming a certain applied e.m.f and then
finding the resulting current in the circuit, we could
reverse the process, that is, assume a certain current and
then find out what e.m.f. is required to balance the con-
sequent hack voltages and thus maintain the current.

Suppose, for example, that the current, instead of being
a continuous alternation 4 cos of, has a form that has O\
already been briefly mentioned (on page 253) that is, O

‘i — '£€_h 08 (wt —|-“ ¢), Q}. W
which, as there shown, can be represented by a Yeg:lgor-df
exponentially decreasing magnitude je—i rotatinglwith
uniform angular velocity o, By applying the 1cs ts for
the differentiation of such a vector (gwwnﬂhﬁ@@ﬂma}l%ﬁh}srg.m
to the determination of the potential diffepettcés across the
various circuit elements, as in Section 128,Gt will be quite
€asy to show that ANV

e, = —Ri, .7
6 — (k — @i,
and e, = JI D
¢ E wg)C
Therefore the e.m.f. re,qaircd to balance these is given by

P

0 e, +eo e =0

] O N — ——I—'—‘ i=e,
or B WL — = wj)c}l
and sinee Aoy 1kt
qg"{‘* F=ef TR b
f I . e _1]i=
L& 24 o fpaye) +o{ of — el ] 1
- NEW suppose that  is so chosen that
4 e =
. (.OL ((:)2 +k2)C Q,
which will be truc if & = o, or if
2 s L
w? + & =1
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that is, if w? = EG — &2,
Then the equation for the required e.m.f. becomes
1 1T s
— N S =8
[2-#{z+ @ me )] i=e X

or (R —ekl)i—=e. R\,
Now suppose in addition that £ is given the value | ()

k= 2L/R. Y
Then the equation becomes ¥

{oyi=e,

N

www.dborraulibrary,org,jn ¢ =o . ,:\\" .
What does this mean physically, 2. X t"means that if by any
means we can start up in the cifgif a current

i =1¢Mcos ,(wi"'—l— é),

AR S T )

where w_\[G'khN/LC_4L2
~n T R
and & E= oL

then no applied em.f. is required to mainiain it. It will go
on quite hap;}ly for ever without any external assistance ;
but it aisp weans more than this, for suppose we can start
any current flowing in the circuit at the jnstant ¢ — 0, say
by suddenly charging the condenser with an external
battery which is then removed. . For physical reasons, the
rént cannot vanish instantanecously. Tt must continue
o flow for a finite time, however short; but during this
~ \ time, however short, it must satisfy Kirchhoff’s sccond
~\\/ law, and it can do so if it takes the form we have assumed.
\“ (We have not, by the way, shown that this is the only
form which will satisfy all the requirements. It is so in
fact, but the proof is rather beyond the scope of an
elementary discussion.) .
This kind of current is known as a ** damped oscillation
because although, formaily speaking, it goes on for ever,
o7 .
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it is in fact very
quickly * damp-
ed down” to a A
very small am- 5
plitude, because q\ —kt
of the term e™#, *
as shown in Fig.
70 (there is, in
any casc, a phy-
sical lower limit [
due to the fact
that  electricity !
is not a continu-
ous and infinitely U
sub-divisible N
fluid, but has an 4D
atomic  struct- ~N
ure}, Such an
oscillation is also A
called a  *f free O Fie. 70
oscillation *  for o3 )
asufficiently obvious reason, {&enerally speaking, all natural
frec oscillations are damped oscillations. ion N
Here, then, we ha%e the answer to question ?:i 5.
The circuit is ca Iw\i..“ oscillatory 7 because, when eci
trically disturbcd,kit tends to oscillate at its own natura
free frequency, . £ is
Notice, by (the way, that if a pure sinc-wave c.m. free
suddenly apphed to the circuit at the instant ¢ = ohg‘tion
{)scillatj()q;;‘g‘lay, and generally w1ll,_be set up in a d}.
to thé\&ehtinuous or * forced ” oscillation already etc;-
mingd Mor this case. Since the sum of the back e.m.ﬁ
is.Zek0 for such a free oscillation, and is e for the fqr%ccs
~BSeillation, the combined sum is e and thus satis
Kirchhoff’s second law., However, _thls .transmnt; C?}T;
dition », as it is called, will very quickly give way 10 the
ilustained ar ** quasi-stationritlry"’ state owmg 10
amping down of the free oscillation. ?
“?%Y,gthSiC ally, is the free oscillatlﬂl:l damped (ic:-\:tlés.
Because the current, flowing in the resistance, gen 27;

94 2
Ay

www.dhiaul i:bral'y_org_ in
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or is converted into, heat. Tt cannot go on doing this at
any finite rate for ever. If it could, there would be no
fuel problem. The process can only continue until the
energy given to the eircuit to start it oscillating has all been
dissipated as heat. This leads us to what may be called ther,
* dynamics , or energy relationships of the oscillating
circuit, that is, to question No. 4. A

'\
T32. THE DYNAMICS 0F ELECTRICAL, OscILELagren

- The rcader is assumed to understand,,fﬂiét if a
current of instantaneous value 5 amperes {flows in a
circuit element across which the consequeﬁt}instantancous
value of the potential difference is » volts\then the instan-
faneous rate at which electrical ener Jds being absorbed

wwrw.d byaudliler seheierein or converted inte‘§6me other form of

P

N\

) 3

energy (for example, heat or mey n) is given in watts
by the product 4, Similarly, if'hfs current is maintained
by an electromotive force ¢, the.Iatter is supplying energy
at the instantaneous rate iedwatts,

Applying this to the osgillatory circuit excited by the
confinuous e.m.f, 2 cos.&f we have, as shown on page 266,

_(Hel)
zz

£ sin wl.

. R, INwlé .
b= 0 2cosol 2" sin wf.
7z feo ¥
Therefore X\
L R N Cwlit (1/aC) , .
te=="5,8%08%l -2 2% cin wi cos wt— 1/ @C) &% sin wi cos wf,
< £?
and sinde)
.E'\“ FE
N> g

A TR

I |1 . I
Y cos? wt = 5 +—2-cos 2wi, sin wi cos wf = o Sin 2et,

AN :
\\ this can be written

A0 Ag A an
. 1R 2R 72 1 4%
=-— 4+ """ cos 2wt + @l X sin owi— 2| -S10 2 el
2 4 2 w(l 2

This shows how the instantaneous power is distributed
among the various elements of the circuit, and the equation
tells an interesting story.
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Notice first that for all the circuit elements the energy
terms are proportional to the square of the current
amplitudc.  Again, the energy changes in the coil and
condenscy arc in antiphase. While the one is gaining
energy the other is losing it.  Moreover, when ol = 1fa(C,
the coil and condenser form a balanced system, in that the
onc gains energy and the other loses it at exactly the same
rates. ‘This seems to be the real physical significance of ,{
resonance, for under these conditions the em.f, does npty
have to supply any of this oscillating or *‘reactive ™
energy. Notice again that even in the gengral casg,{there
is no nct supply of cnergy to either coil or gondenser
(remember that this refers to a coil assumed\toyhave no
resistance--the resistance is considered ;l.é@eparate‘ )
element), for the average value of sit¥ “é\?f:liér LarPhid B0
means that the energy supplied to eit ef:}ul‘ing any half
period of sin 2wt is recovered during\ghe next half period,
which means that energy is alternatély Stored and released.
Thus the total encrgy acquiredyby- the inductance 1n the
interval { == 0 tot = Tf4is \™

T)1 A >
W = j Li‘??’sin 2 wi dt
[

19 I T4
=—m—~L\i‘ — == CO8 2w£]
§ \'2 2o ]
AN L 12
oy 2
This is a parfectly general result.
CarrYlﬂgiﬁ\ Current 7 has a stored
amount B 772 )
Sifmil rly, for the condenser, it can be shown in the same
wagthat, for the same period of time,
o) 1 4?
TN W= — — = —-
\/ w2

A coil of inductance L
(magnetic) cnergy of

This, however, is better expressed in terms of g, the
cross the condenser,

amplitude of the potential difference a
‘-‘\?h_lch is giVCl’l by

. H
g — — Z'J-_C'
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so that

W= _ Iy
2

This is also a general result, that is, a condenser of capyaci-
tance (' charged to a potential v has a stored {electric)
energy 1Cw2

Now consider the resistive part of the cireuit. Take the
term $72R cos 2wf.  This hag positive and ncgative vangs;s\
Does this mean that there are times when the resistamoc 1€
returning energy to the circuit ? This would indeed he
something new and startling in electrical thegryd! No,
the point is that in this case the separation infoMwo terms
obviously does not correspond to any physical reality,
since the resistance is itsell a single clement’ ‘Ihe power

www dhppliihearliefgdiiance is really the singlg term #2R cos?wt,

N\

e
.

\ N
) 3

which is always positive. The separ@fion into two terms
is simply a convenient way of showing that the average
value is $2R/2, since the average™walue of the other term
is zero. 3

"

Thus, briefly, the dynamicgef'the circuit can be described
as an oscillation of energyebetween the inductance and the
condenser, combined <With a pulsating dissipation of
energy in the resistagce. It presents a very complete
analogy with mecharical oscillation, in which there is an
alternation of epérgy between the kinetic {magnetic) and
potential (electnt) forms, with a pulsating dissipation of
encrgy by Iriction (resistance).

It hasyalready been pointed out that the goodness ¥ of
a tuned Jeircuit for most radio applications can con-
venichtly be measured by the quantity = wl{R.  We
can now see that this is in effect the ratio of the oscillating
ef#rgy to the dissipated energy, thal is,

¢

L 1172
Q=2"_, F
R

- o T
IR

The wL{R definition only applies to certain simple special
cases, but the definition in terms of energy is quite general
for all kinds of electrical oscillators, and has recently been
adopted as an agreed general definition of Q.
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133. TEL MEASUREMENT OF ALTERNATING CURRENT,
VOLTAGE AND POWER

From the preceding section, it is clear that a direct current
i Bowing in a resistance R will be dynamically equivalent
to an alternating current of amplitnde 7 in the same
resistance, provided

42
. 12R
2R =", 9 \\\
2 N\ K
. i L >
that 1s, provided i = Va N

N

The quantity #/4/2 is called the * effective valuc{;:’r 'the

“ root-menn-square value * (r.m.s. value} of the alternating

current { = ¢ cos (wt + @), and is USU%HX&Y{E:t(th}Ii{bVa; Brg.in
S

of course, so called because
i I T‘sg,}, :
= V2 Tﬁ:?“ Nl
_ The reader should have no diffichlty in showing that if ¢
is an alternating current of comiplex waveform represented
by A\

i=1,cos(wt + &) + ﬁ{coé(zwt + ¢y} +Egcos(3el + $s)
W\ . -+ etc., ett.,

2

= X R = P i L e
Altcrnatipg\cu}rcnt is therefore measured on instruments
in which thewdeflecting force is proportional to the square c;l
the curpent; and in which the moving system has so muc
inertia\tHat it cannot follow the instantancous (douhble-
fregliericy} fluctuations of ¢* and therefore registers dl.ts

average value. Alternatively, and more usually at radio
~Frequencies, the measurement will depend on measwring
/'R, for example, the thermal em.f in a thcrmojuncu?}x:é
or the change with temperature of the length or

resistance of a wire.
The effective or root-mean-square va

voltage is similarly defined.
Finally, the average valuco

lue of an alternating

{ the electrical power supplied
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by an em.f. ¢=2¢ cos wi, which maintains a current
t = {cos (wt — g{)),ls

W = {1 08 (wt — ) é cos wt} di

wan
Ws

cos ¢ = IE cos ¢. . N\

|

N ¢
X . . oA
In this expression, cos ¢ is called the power-lTacior *, P N
4

v
134. CoMBINATIONS OF IMPED. ANCES
There is another very important gencral pmp'\mwn to
demonstrate in connecction with the s1mp,lem1\1?1cd circult,
but it will first be convenient to note some generzl properties
of series and parallel combinations of i pedances.
W, dbrthhmm@ﬁﬁ@EB connected as showiyh Fig. 51, that Is,
in series, the application of Kirchhoff*¥ frst law, and other
propositions already established il lead to

1--efz,,’ by
Z —-—z,‘:-r zﬂ +<..33

that 13, the effective total Impcdancc is the sum (operator

sum, that is) of the separatc impedances, Thus, expressing
zas R 14X, \

JR=R, 4+ R, + R,
and \\
O X=X 4 X, L X,

Note a]sc» that since v, = iz,, v, = iz, etc.,

where

’:\M L1 L Vg Za
4 =, R = 2R ere
\*:\, e z'e 2z’

j,‘w’h’\ich is often wseful in circuit analysis.

NS
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4 22

A
f - 1 _;1214 I )
@ z £

t ¥y 2] V2
1 | Y
T 3
B‘ 82 A ¢
2 ‘ ©
Fig. 72 e\
§

Now cousider two impedances 2; and Zg commt?d’{n

parallel as shown in Fig. 72. ) e,
From Kirchhofls second law, applied to\:ﬂiq‘Cloged

circuits 4 A, By B and A 43 B, B, www.dbl'afxlibral'y.org.in
gt v, =281V O

that is, —¥, = — V= e’,”,\v
or iy 2, =13 23 =&)Y
. R B S
Therefore i, =- At 1y = P
LA 2

™

Now, applying Kirchhoff, s> irst law to the currents at the

point A, ,,,{\ . X

AJL =1 + 1y,

\\ . e ,B__e(_1_+_1_
that is, \ = TP T g

O S al
Therefore, pufiing
7, i=
i"\'” z
\‘.t
I I
& gl
Y F AR T 4
A\

S\ 2 . . impedances is
N The generalisation to any number of mmp

V sufficiently obvious, and need not be deta‘,lcd'ara,llel there
. For the case of two gencral 1mpcda{1ces 1;11,ph is useful in
is a very simple geometrical construction whic h

L ;in Fig.
AP o oron. It is illustrated ¢in
visualising the combination < except that th ela;tnanglc

73. The construction is obviou 279
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':o”\'s
&
O
,\:\“‘»
Fig. 73 4
N
. | Ny
0AD is drawn similar to OB, N\
www.dbraulibrary org.in Z2a =04 j[e..é);b
z . g(i‘\
212y OB‘;W:Q 1,
1 Q
But, in virtue of the smnlangy of the triangles,
04 OB

0D = He» ond eg‘rse ~ A0D = B¢ = ¢ — 0.
Therefore 53/&\ 21 2y

¢ {él 41
or N\ \&.I L
o\ 4 Z17s Z 2y
Ifz, arhi/zg are mutually perpendicular, the construction
is a s {al case of the above and takes the simple form
shq 1n Fig. 74.

\\

’o

,.\‘
N

Q;

Fig. 74
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APPLICATION TO RADIO

135. TaE RejecToR CIRCUIT

The oscillatory circuit may be excited by an e.m.f.
applied across the circuit as shown in Fig. 75. The
branch impedances are now in parallel, and, from the
preceding section,

iy = (ij + é)e,

where 7 =R + jwl, ‘

: [ R . L . L 4
o ig thzz-mi-J (wC - %2— }e. ~\
where I R4 wL? '\: \

wAbraulibs

wy
) cx'\”
€ =@ os il N N " . L
L]

N\ W
N,

Wy Fig 75

Here again there is clearly ayesonant or crific

at the frequency corres%nding to

al condition,

o
S L
[e1) i"tzq = 0,

O I
'~~.;..' wilC :__?r .
N/ AT
AN (I + a_,st)
(this is(h6t cxactly the same as the serics resonant
freun§S§: lor whicj{l w20 = 1, but since R’ 15 usuall_i
VEI;}{',}ma]l indeed compared with w?L2, the difference 1
generally negligible).
"\t is casy to see that this res

or

onance corresponds o 2
In fact, at resonance

. Re=_¢8
Iy = Z—z— ZSJJIR,

and the circuit behaves to the applied em.f. as if it were 2
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pure resistance R, = Z*(R, which will in general he a large
quantity—anything from ten thousand ohms to 2 megohm,
Also, paradoxical as it may seerm, the smaller the series
resistance of the circuit the larger this effective external-
circuit resistance. In this conncction the eircuit is called an
“rejector circuit”, and the resistance B, is called thé
“ rejector circult resistance ”, or, more generally though
less justifiably, the “ dynamic rvesistance *. Noid, Hiat
since, at resonance, W

wl. . L N
Wb =25 orZ= 7z
\\
L _ L AS.

R —CR
v w . dbeAddihid R dsgsinall compared with gyzzb\*’f
I N

—— AN

£~ OR0S

This transformation of :J:lpw real resistance inio a high
effective resistance mustbef course, be associated with a

corresponding  transfowmation of current salisfving the
caergy cquality Y

AN . )
k\'\’\.f 2 2
72
that 15, \ {fg = ;.._2.
0

Thiy i;}@asily conlirmed by applying Kirchhoff’s second
law toothe I-C-R circuit, that is,

\§"\'§~ i i
W —1p S
z{\ JoC tei=o,
SSwhence
AN .
PR | I
\ M S =
\/ iy 1 +jaCz
and since, at resonance,
w( = wl{Z?
T 1 _R—jelL
Iy, r1+jel/(R—jL) R ’
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. i _ 2 _Z¥R _R,
so that, 2T e TR TR
This is very nearly equivalent to
i _ oL
iy R’ _

which shows that the current in the tuned circuit is very O\
much larger vian that in the external circuit. L
This “transformation ratio” as between the tuntf:ds,\

circuit and external currents, with the possibility (?f $OR-
trolling this by mcans of adjustment of the circuik, ons

slanis, is 2 matter of considerable practical impériance.

We shall see in the next section how it enable} optimum
efficiency conditions to be established Ry T,H%@Hﬂ%i-a%y.org.in
ned circuit 1o a source of e.m.f. which, as’ﬁrﬁﬂ practica

cases, i5 associated with an effective_infefnal impedance

P ;

having a resistive component. PN

130, Tue *  MATCHING ** OF ANOsCILLATORY CIRCUIT
TO A SOURCE WF EM.T.

In most of the practicalapplications of the simple
oscillatory circuit, the aprangement will be essentially as
shown in Tig. 76, thatds) the circuit is connected to t{}lc
source of et threwigh an impedance. Moreover, thy
one of various poési le means, the reactive part of e
mpedance can by controlled.  An important example 15{»_
the connection{df such a circuit to an acrial by means o
A circuit whicly includes a variable condenser. .

o most '¢a ses it will be desired to realise the maximum
value of flie resonant voltage v for a given e.m.f. ial

The antalysis will be given very briefly, since the cssentia
Stepihave already been exemplified, but more space ”

mbé\%’i"ﬁl‘l to the physical interpret'ation, whlclll1 lﬁtgca ¥
\ “’aYS_ the most useful and interesting part of ;J IZIS cil;}f;-uit
. Pllftlng By + 7 X, = 2y, and 2, for the par
Impedance,
v Ze I r

€ zptz 4o 1.1
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_ - Pp— R— P
oz, R R . wh X
Zo 1ty a _ b dg

etz e = 7
where L2 =R? + wilL? ~
and Ko® = Ry? + X2 \

Resonance of v/e with respect to ¢ will occur Vx-'ht;r{t\'
NS “
- E—Z s O
£ Lo ’ ,“‘.
v 1 1 A\
and (-) —=_ ... . +¥7)
e/res. 2, RQ_,_ ' <\
T O
: I AN I
Y R\ S :
www.dbrmqu;@oré-g) res. <o {Qo_ . 'HL\ _Rg_ j za_
0%‘ N/ 2 Zo R, »

2 L)
where R, = 4 ol e
and is the * rejector cifgfaii resislance ” of the preceding

section. R\

The problem now it to find how this resonant voltage
ratio depends o the adjustable element X, and whether
there is any dphimum adjustment. However, with the
ratio exprcs’se\& in the above form, the probiem is a very
simple ongifor if X, o 18 varied, T, will also vary, and we can
thereforey eonsider the © optimisation ¥ with respect to
Zs  NeW the denominator consists of the sum of two terms,
Ro/Zppand 2R, the product of which Is constant with

&Spect to 2, Thercfore (sec Example 8, page 229) their
'&«m will be a minimum when they are equal, that is, the
QM:'.’\optimum condition is defined by

oy R Z
) fig __ <o
Q 2 R
or Ko = Ry* + X, = R.R,
or Xo® = Ro(R, — Ry),
which shows that there is no oplimum value for X, unless
R, = R,
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. Zo w2
|
Ay £ !
¢ é }
e "
! c
e " I ! 7! m LoV
Ny ’ | g l N\
? e |
| | A
: (NN
: o\
Fig. 76 A
The corresponding maximum value of the resondnt
voltage ratio is given by AN W
(c;') _ 1 Lo .1 ,\/:E_\f W\EW_w;Ldbr‘Eli.Brary,org,jn
&/ o5, ma. 2 R, =2 R, 2 R YR

This process of adjustment is called £mnaiching ” the
tuned circuit to the source, and similar matching processes
play a very large part in radio. Thg reason for the name
and the physical meaning of the process will become clear
if we find the value of 2. underithe above tuned and
matched condition. We have “Rv .

}_. — I_ e "“: jlgp— '_3 + .mc,
z z ”Tg\ 7 iz
and since for the tunetk‘;(zilﬁe of G,

AN } / L R R XU
A\ 1 &0
7 i=pti
But under&le matched condition,
W R _B
RO
}i‘mfef‘orc I R0_+—?_X — ——I—-f;
Ze ZDE Rn—‘} 0
therefore ze = Ry — jXo-

as shown _in
d, is a ser1es
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tuned circuit with zero
total reactance and
two equal resistances
Ry That is to say,
the translormation
process  described +id
the preceding section
enables the etfpsiiye
resistance of l}j'e;})scil-
latory circuit."to be
Fig. 77 matched b, Jthat is,
. adjusted (o equality
with, the internal resistance R, of the\gdirce, while at
the same time the reactance of the sduve is tuncd out
Mww,derEHjb'i%r)@.%Bg.hnand opposite reactante/provided by the
osciliatory circuit. <

"The most important point tq €otice about the matched
system is that the total elcctricdNpower being dissipated in
the system is equally divided\betwecn the source and the
oscillatory eircuit, which §8%the useful load. It will be
found that this “ dynamie\balance ** is a perfectly general
characteristic of all stich matching processcs, however

they are cﬁectcd,_a,@ is their real physical significance.

7

Ol

A\
)
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Chapier 8

HEA;;ISII?E’S TECHNIQUE FOR SOLVING
ORE DIFFICULT ELECTRICAL
PROBLEMS

1537 b
37. Tue OvjEcT oF HEavisIDE'S TECHNIQUE

N Chapter 7 w ; o
whm;lh, }: ; we have considered mainly what happtus
aaen e 1orqwmg voltage is a sine-wave altcr{{afi’ng

requency w/{2s), and we haye @ssumed

that a it
stcady state has been reached, eucepdiisgubitre org.in

mvestigati < et
can }E’lr;gi}n tﬂf free oscillations ”, whichsonce started
We have I:E‘T Elcllnfctld without any externa& driving em.f.
rotating ‘ve;‘?gfs ‘ fihc currents and galtdges fvolved o3
same 1o and all the vectors have rotated at the
The object NN
tcchn?qij‘liu. 05 the present chapter is to explain the
difficult Cas(:“mTU(de by Heaviside for use in more
a heurisiie 0?: ills techpigué was used by Heaviside in
jUStiﬁcatio}l ) rexp oratory, manner, and full mathematical
This necd no;acsl nc{gyaﬂable for twenty years or so.
Heaviside.  1r cter from following 10 the footsteps of
and his mssum wo(Can start with an act of faith in Heaviside
current I -ﬂo .V’p(lgns (ll_steq b.clow)_, we can calculate the
It is cop S\jf)g na circuit in which we are interested.
should “{: ‘? l1‘1aL1vely easy to prove by other methods,
the diffonl ish to do so, that I is the correct current;
ty, initially, is to have any idea of the sort of

curgén! :
et to cxpect. At this stage we can think of Heavi-

51d€% techni age |
b hnique as an extraordinarily powerful means of en-
felectrical circuits.

high
gg::‘?{:i g;lcss:.work as to the behaviour o
ot it 5 impo‘:tas a very cxtraordinary and qnusual ‘man,
not o pl'ofessiant i:o note that he was a practical engIneer,
years he siona _mathemaﬁa_an. Indeed, for rmany
was despised and rejected by contemporaly

Cambri caleujus cam

: Tl i el 18t

dge mathematicians. Heaviside’s caleud e
287
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into being because he wanted to solve praciical problems,
although an advanced modern textbook on the subject
may look like the work of a purc mathematician.

135. HEAVISIDE'S ASSUMPTIONS

O\
In order to understand Heaviside’s assumptions, which
are in effect a generalisation of the idca of impedanee
and of Ohm’s Law, we shall have to be willingsto, miake
frequent excursions in both directions between theMamiliar
world of time and space and a new world, whErs the most
conspicuous symhol is the ** Heaviside opefator ', #.
Our assumptions are concerned withthe structure of
the * p-world ”, and the means of comwhnication in both

et yeen 1 me-wy ’ let
www.dbrgéf%}téﬁlﬁs?}ﬁgmcen it and the time world, The complete

S

£\
Qs af
O;{;ng

A L gn=1 e f(n—1}!
“\.

\ 3

ntion”ot & problem usually first’fequires a journey into
the p-world, then algebraic Qm}}nipulation within that
world, and finally a translatidn of the results of this
manipulation into terms of¢he time-world;  but we shall
see that in some cases, snal as when we arc considering
stability, all the informatfon we rcally require is available
before the return to the world of time begins.

Ohrr first assuinption is that to any function of time (¢)
supposed to be zzré for negative values of ¢ and to start suddenly
when ¢ == o, thitrk corresponds a unique function of p, and
this corregpéndence works both ways. An elementary list
of pairs of eorresponding functions is tabulated below :—

Timed &y a |rjn! | e €% —1 sin at
prvodd fTplLa 1jpm | pf(p—a) | of(p—a) | paf( p2+a?)
ai e cog bi € ® gin br

P {0+ {(p+a)*+b2}| pb] { {p-Fa)24b%) i

pi(ptay

Thus if a d.c. voltage ¥ is suddenly applied to a circuit
by the closing of a switch when ¢ =— o, this is represented in
the p-world also by V (see the first entry of the table;
¢ is assumed to be a real constant throughout}. If as
a result of the p-world manipulations to be explained later,
288
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we find that the current is represented in the p-world by
say V/(p—a), then the current that is actually flowing is
(Fia) {e*—1), from the fourth entry in the table; this
current starts sucidenly when ¢ = o, .

This assumption cstablishes two-way communication
between the two worlds (and the list given can of course
be vastly extended, though it will be sufficient for under- A
standing the fundamental ideas). The remaining assump- L&
tions hold within the p-world and it is because of their {
simplicity and gencrality within that world that Heayidy
side’s technique works and leads to useful results.  #

Our second assumption, then, is that within the pyérid,
Ohm’s Law applies universally, that is to say, the back
vo]tftge F; produped \-x:hen a current Iy f\l,\,?\ErVS &'@}al&ﬁ%‘l’%’%_ org.in
equivalent to a single impedance {p 18 glVF‘sé'

Epy=—2p X1y O

where E, is the p-function corresp{)ricling. in our list to
Ey, and 7, is the p-function correspending in our list to Zg.
Thus if we know 7, we find Ip .{E{)m our list, _ml_ﬂtlpl}’ 1t
by Zp which is a property of fie network (1t”1s in fact a
generalisation of the * impédance operator = we have
already met in Section 136) and then look for the product
n the hottorn row of” i)\ur list to obtain f‘j} from the
corresponding entryin, the top row. If"E'p is not in the
List, algebraic 1'nanip\:hation will be required to break Ep
UP into a numbep of terms each of which is in the list.

It remains ¢, determine 2. It will be sufficient if we

etermine ffig” impedances of simple circuit elements,
hecause «fith third assumption is that impedances in SEries
or parqi&"can be combined in exactly Ehe same way as
In Sedtion 154, that is to say, if a circuit consists of }:WO
elenients having impedances < and p In Scries, dt ese
“May be replaced by a single element having 1mpe aﬁlglc

1+ 2, and if the same two clements ate . pard Z,'

ey can be replaced by a single element of impedance

where
(1/R) = (112 + (1/Ra)-
We have already noticed (in Section 12
em.f ¢, due to a pure inductance is —L
Io

6) that the back
(difdf) when a
28g



BASIC MATHEMATICS

varying current i flows through it. We now assume that
the proper way to express this in the language of the
p-world is to say that the impedance of the inductance is
#L ohms when the inductance is 7, henrys. There is thus
a close connection between p and d/dr. /

The corresponding assumption for a resistance R ching
is simply that its impedance is R ohms, while foh a
capacitance of ' farads the corresponding assumpfion/is
that the impedance is 1/(pC) ohms. This asstunplion
implies that the operator 1/p corresponds to ingegration in
the time world in much the same way as p itselficorresponds
to differentiation. But it is not worth while to pursue
this corrcspondence at this stage. poawd didt are in
different worlds and they should retmdin in their own

www drenldbraryeprgdBmpt o communigite” between the two

Ny a7,

Ny ." b} .
G corresponds to 42K, [ Vilimo—p 7],

worlds should be made except Ay ‘means of the list of
corresponding items already gvew, and the general rules
for extending that list which,[6llow. These general rules
complete our equipment 43P investigating the cffect of
input voltages such as ubit-step voltages which are not
pure sme-wave altcrnabing voltages, and enable ns to
consider the initial £ transicnt » conditions as well as the

ultimate *° stcadyQTatc ” conditions. The general rules
are )
(i) Withifi\ ‘vthe f-world, p 1may be manipulated
alirchbraically,

(i7) Both“Kirchhoff’s laws apply within the p-world as
_LOywell as within the time-world,
(zz\zi\If V¢ corresponds in the list to ¥y, then

;- corresponds to pV, — p[Vi];—,

dt

av,

22V, : ‘
s’ corresponds o P‘Vw“93[V¢]f=°_f’2[ é’c]z

[
£ [a’t] t=o

L]

2go
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and so on; the general result can be expressed

dﬂ. E," n—1
“ corresponds to prVy— X p #s [JLVGJ
s=a i=o

die t
l it
[
@ S = v,
{t. - # 3 \\
(C) p— pt = pt_ﬁ;o Vrp '\ \“’

S

(d) e =¥, corresponds to _{_i Ppia A\ 3
The result (ii1) (a) wi . parti ol
] _ will be found particularly\tiseful i

connection with the solution of linear diﬁ'crentia}i eqilatio£

(Section 147). For a “dead ™ circuity, the-Jeli1 g8 R org i
i org.in

* - n
simplified to: gféi& corresponds to j)“VQ.C:,\
abg}z::t) Ig’b J and (¢) often give ug ssufficient information
neod ¢ and its ‘derwatlves if_we know Vy, so that V¢
” not be explicitly determine@® In (3i) (d) the symbol
pi'—t:c rmeans that p is replacedPy f + e« in Vp.
I Clb perhaps worth noting 1n passing that if in our List
orresponds to fp, pasn®

SN

JE(‘;‘;VJdEd tha:t. Eértain mild restrictions are satisfied by
and fp., t\Wc shall not in fact use this general relation,
o is familiar with Laplace

allied to Heaviside's calculus.
of a function f(¢} of ¢

tra):l?r Iiﬁ?ﬁéneﬁt of the rcader wh
The f;?;i{ we note that these are closcly
i Ct‘iﬁr,ﬁ’%aijc; transform (* one-sided *’} L{ (2]

) L] = [ e (e

\a‘}

tﬁ;f[flﬂ)] is thus a function of 5. If we multiply L[fi] by 5, and
eplace s by p, we obtain £, 1tis highly degirable to keep different
i In this book we have

I

ael“tl.t)ti:;::as-' Iaru'] # for the two kinds of expression.

o, fusi: v chosen to use only the Heaviside calculus in order to avoid

syt g the reader, We could have chosen to Us€ only the Laplace

Impedé, it is largely though not entirely a matter of gmunal preference.

o inces and transfer functions arc the same in the two systems
pl insofar as p has to be replaced by s or vice versa.
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as we shall only be concerned with straightforward cases.

Weare now in a position to apply the technique to speeifie
examples; in one casc the input voltage is not = pure
sine-wave alternating voltage, so that we could not have
used the mcthods of Chapter 7, while in the other, we shall
see how Heaviside’s technique confirms what we alreddy
knew about steady-state conditions, and clearly disentqn&lcs
steady-state and transicnt terms. R\

O
I139. APPLICATION TO THE SERIES RC;)&S‘%})
Oscriratory CIRCUITS 4N

&/
For our first example, consider the ci‘fp\lit of Fig. 66
with the inductance shori-circuited ; 1& ey be the p-world
www.dbequiihatayt oxgflinhe  source voltagc,.{&u‘d ip the p-world
equivalent of the current. Thu{x & HRip is the p-world
) . 1
equivalent of the back voltage\ji the resistance and oC
is the impedance of the capaipifiﬁr; the back voltage in the
capacitance has the g-worldbequivalent —ip/(pC). Hence
from Ohm’s or Kirchhoffis laws we find

~N . LIy
Gk ) =
2o that ) \
Nt fCey
O PTRF(1pC) T 1 £4CR
If ef 'i;} a voltage e suddenly applied at time ¢ — o and
theréaftcr maintained constant, ep — ¢ from the list of
@on 138, and hence
O

. e

™ g == L
NS . R p+Hua :

'\ where « == 1/ (CR}. It follows from the third entry in the

N\ Hst, with —o for g, that

In some cases we can overcome gaps in the list if we
can expand iy in a serics of descending powers of 5. Thus
292
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if we writc

T
praT o FE T TR
p

we obtain, by repeatedly using the second entry in the
list,

A ¢
AN

232 "

D,
"N

. 4 3
which agrees with our previous result. At low fregiencices
we are usuzally intercsted in having « so small\TCR so
large] that the response is practically perfestvthat is to
say, the time terms in # are negligible. www dbraulibrary.org.in

Expansions of ¢; in descending pow_v,e:x:,ﬁ'\of p can ofién
be obtained in more complicated circpﬁ:s Where compensa-
tion is required. By means of such/expansions we may be
able ta determine values of the elenients under our control
so that the coellicient of ¢ in 48 zero, and perhaps the
coeflicients of higher powerseef# also. N

Our second cxample slte conmder.the effect on the
complete series oscillagovy circuit of Fig. 66 of suddenly
applying the voltageleat time £ =0, qnd subsequ_cntl}t*
maintaining thi Qoftagc constant. Since the circud
consists of three chments in series, it 1s equlyalent to a
single impedardc® 2, which is the sum of the impedances
of the individgal elements. Hence

DT zp=pL R+ (10

T hQ’}X\::orld counterpart of the input voltagchls,t?,Lf:f

wetherefore have, from the generalisation of O 'mf’ the

»\:"ﬂ?at if the p-world counterpart of the currcntlcl13 oﬁjnter—
\“ack voltage due to this current has the g-world ¢

art
Ep=—Zp %X Ip
and by Kirchhoff’s second law
Eypt+e=0
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It follows that

- N L A
o=l = 70 4 B s

We therefore have complete information about 7, provided
that we can in some way reduce the expression fordfy
to the sum of one or more terms in our Lst which have
known counterparts in the time world, I Ll s

customary, we write N
we? = f(LC); « = Rj(2L) N
we have '\\
v € 2

¢
\\rW\\r_dbrgalifl'drjz.p?grén 2ap 4 wy? — L ,\@’—f— ay? 4 {w02_;.12)

There arc now two cases _dt, Consider, according as
wy > o [R¥ 4L{C] or wg <7 @M% > 4LJC]. 1In the former
case, if we put « for (wo? —~a)}, we have, from the list
of Section 138 AN

e pw € .
iy = 3 et whence f; = € ¥ gn i and
T Lw {p+o)® Bw? P L ®

LR Y
e

in fact & is vcyyj;u\milar to the current found in Scction 151
which req irédino voltage to maintain it. The significance
of this wihe more easily understood in the light of the
remainige examples,

Injthiycase (wy>a) the denominator of [, is a quadratic
in pwhich has no real linear factors; in the contrary case,
hewever, we must write £ for {a®—w 0%, so that & < =,

Q@nﬂ I, becomes

W\ - ep 1

BT ety
We cannot use the list of Section 138 to deal with this

expression as it stands, but we can hreak up

H(p+atk) (p 4 a—k)
into *‘ partial fractions ’, thus
294
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I

I
FEar e e B TG Faib{—a—kte4

T _ [_ T _r_]
+{-—oc—!—k—}—oc--}--k} (pra—k) — 2k [pte—t ptatk

and thus I, reduces to the differcnce between two listed

terms O\
I — ¢ . - p S !J__ ] 7"\ \“’
Pkl lp e —k ptatk « \
so that N
I A R4
It . ka!, [ 4 — £ ' + m}\

The process of breaking up the CXPTCSWW.CQJFaUHbI'aFy,Org,in
D
i/ {{pt+ath)pte k*)\}

into ““ partial fractions >’ so that Ji,t~]3ccomes a 5erics
of terms in our list is of great impodftance. We are at
liberty to keep the factor p in Ipapart from the expression
to be broken up if wc wish; since the breaking-up
process is purecly algebraic;«glternatively, we would have
obtained the same agéwer if we had bekm up
PIP + o 4 F) (p + o)} into partial fractions. We
ave already come @1‘655 partial fractions in a different
connection in Section 118, where we wished to integrate
the expression 1f(32 --a%) and similaxly broke that up into
¥ partial fracuisis 7. s oeis qui
The rulesfof determining the partial fractions 13 quite
simple, and/is indicated In the derivation above. - (?l"‘r ﬁ'
requirg\the * partial fraction ” with a particular A C}
nomiigtor (p -+ £), we put —§¢ for p all the 'rest "
thegRpression to be split up, numerator and denomlIr}a tO}f )
mxegpt the factor (p + £) in the denominator. rg
\, factors of the expression to e put in parua_l fractions a e
not all real as here, some adaptation of thlf’ techmqll'i ;
required, as will be indicated in the following cxan:llF Cb;
but it is always possible to obtain the correct _rcsuto bz
proceeding as if the denominator of the expression

put in partial fractions had factors which fmvolye On'élli
2
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real numbers. If subsequently complex numbers have to
be substituted for some of them, this may conplicate the
algebra, but does not affect the gencral nalore of the
result, or the validity of the calculations for the factors
which involve only real numbers.

We have so far omitted the border-line case of so-catlgdh,
“eritical damping ” when R? — AL{C, e — k= 0, and

a = R{{aL}, In this casc A
I =5, _? OO
"TL Gt (&
.o . £\ ,
and this is covered by the last entry in ourzdi, %o that
LS
+ I — ¢ te —af "’\
£ = L 4

v w dbrEREbERRY B fie some of the factorset (he cxpresston for
which “ partial fractions ” are régwired are not distinc,

is more difficult, and in gencralNis outside our scope; this
example mercly indicates | awJpossible way round the
difficulty. Replacing equall factors by distinet factors
having a small difference will very often  Indicate
adcquately what happehs. Indeed, in the case con-
sidered, the three _eXpressions derived for 7, differ very
little for small andGhoderate ¢ if £ is small or if w is small.
Now let us gog\lsider the case when the input voltage,
instcad of beig’e starting at £ =—q, is ¢ sin Q¢ starting
at {=o0. sI'he objcct of this example is to show how
Heavisides.ealculus confirms what we have already lcarnt
elsewherd,/and also gives us further information.  We shall
cousider first the casc in which R? = 4. L0 so that the «,

£ metation applies. We now have that the counterpart
e p-world of the input voliage is epQ {(p24+Q ?) instead

Sof ¢, while the impedance is unchanged. It follows that

_ £ £ )
LN+ DB A
It is advisable, when possible, to keep a factor p outside
the expression to be Put in partial fractions as we have
done, since so many of the listed £xpressions contain p
as a factor. Now corresponding to each of the real
2496

N
O I,

N
%
\ }
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factors {p-w+£i) and (p+a—k) of the denominator of
Ip, we can expect a partial fraction of the form  4f(p+a+£)
and Bf(p+o—£) where 4 and B are obtained by putting
—e—Fk and —a+k respeciively for p in all of the
expression

Al o ¢
P4+ e3ptat+i)pta—4k \ ¢
except the factor which would make the expression infinite. . ™
With the factor (p24-922%) in the denominator, the pro-\
cedure is slightly different, since the expression p?-}0%
has no real Hnecar factors in p. We can always afSume
that any facior of X (p) which has degree greaterthin 1
gives rise to a partial fraciion having that ‘d_cnor'r}mator ‘
and a numerator of degree one less, sovthattadtibreasy.org.in
the partial fraction to be expected can be, takeh as

Yran —
X(p) =

G+D N0
pArer (W
We thus expect to be able to find4, B, C, D so that
y N3 G+ D

X =y ey ra—tt o

& _
and we have alreadydistussed finding 4, B. \ .
To find €, D, miultiply through by p% -+ @ and then
Putp =jQa. We¢have

A\ o
09 X0 = GG T e

O

'..\". .
Y, -4 B Yipran+G+D
\ (ﬁ+a+k+p+a—-k>(p' )

50 that, since p==j implies p? - @2 = 0, we have

Loer ~Go +D
(@ Fa+ 500 +a—45)



RABIC MATHEMATICS

and €CQ is the imaginary part and D the real part of the
complex number on the lefishand side. It follows that

(=B}t —{x -k D
A :%Z{Af’ : -+ fe + CcosQ ¢ -1 Q-smﬂ t}

where 4, B, C, D have known values, Now it turnsgut,
as it should, that ¢ and D have just the values reqtired
to give I; the “ steady-state * terms already engduntered
in Section 129; I, has, however, two additional “terms
which decay exponentially with time. These are the
" transient ** terms. RO

If now R2< 4L/C, it turns out that the pnly difference
is that the * transient” terms bf;co}ne of the form
Ke=t cos (wi 4-4) already encounterédin Section 131, and

www.dbré"fﬁiﬁ&%‘f“’f{;ﬁ?ﬁﬁ that in all the exagiples we have studied,

transient terms have been one g¢'more terms of the form
Aet where « is a real or cogmlex quantity which, when
substituted for p in 2, Mekes <p zero. If « has a
positive real part, the corresponding transient term will
grow with time and thelsystem will be unstable. If p
15 only quadratic in pythe two a’s are casy to determine;
we have, however,%seen in Section 45 that it is difficult
to solve an equation of degree higher than 2. Fortunately,
we can determine whether any «’s that make Z, zero
have positive_real parts without finding all these o’s.
This is diseussed in the next scction.

< 140. CONDITIONS FOR STABILITY
%qt S now suppose that ), is quintic in g, that is to say

QF R =0t® + 0t + b 1 ap? + ap + g,

"\\This is merely to fix our ideas ; we shall later see how to

adjust them when K is of lower or higher degree.  First,
let us separate the terms of even degree from those of odd
degree, so that we write

R = plagpt + agp® + @] + [a,p* + ‘IEP% + aod
Now solve the quadratic equation

apt + ayp® 4 ay = o

and let us call the roots Pr=—ay pP— —u, (o << g} 5
298
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@, and «, arc thus determined only by the terms of
even degree in Zp.  Correspondingly, solve the quadratic
equation
asp* + ap* + 4y =0
and let us call the roots of this second equation p?=— g,
and p% = — B, (B, <2 B,). Then B, and B, are determined
only by the terms of odd degree in Jp. Therc will be
stability for the system associated with impedance {p only A\
if (i} all the a coefficients have the same sign [which we
shall take to be positive] Ao

(2] oy, o9, B, and B, arc real and positive "G

(i) oy <2 8y =7 ay <2 By S '
The proof of this statement is somewhat  duiiide our
present scope, bul il is a very powerfil, &}J{.amﬁthg‘org‘m
casy to usc because although <p hgs:ﬁe_cn assume
quintic, we have only to solve two, giladratic equations
to determine stability, and stability Jg et of the guestion
If either of those quadratics has complex roots Pt In
the above form, the result is easily applied when Kp has
a higher degrce. If, for exafbple, <p was of degree 8,
the terms of even degree, tfeated as above, would form a
quartic in #2, so thergswould be four roots &, o %
and #, (in ascending order) where in the above discussion
we had 1wo, and the terms of odd degree, treated as
above, would forr:\} cubic in p32, so there would be three
roots B, B, anfl\B, (in ascending order) where 1 ths
ahove discugsipn”“we had only two. Conditions Q] an
{#) would, &® unaltered except that ell the «'s an B's
must nq\a('b\e real, while condition (fif) becomes
A\ o < By ayt Byl oy < Ba< o

’\ -

Unforenn: it i i s the condition
{ ately it is not possible to expres

SN ¥ P en the degree

:fug stability in terms of the cocflicients a wh the
"Nt T4 is 5 or more, but if Zp is of degree less than 5
“Vgeneral result already given is equivalent to: i

Zp quadratic (a,=a,=a;=0): All coefficients of the
same sign is suflicient.
<y cubic {g;—a; =0} aydy = Gy

. a 2
{p Quartic (g == 0): a;ayd3 > Gs% + 8% 209
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141. CONDITIONS FOR ADEQUATE DauriNG

In the case of amplifiers (especially feedback amplifiers)

we may be uncertain about stability; in the case of a

passive network we know in advance that therc must be
stability, There may, however, he inadcquate damping.

If we can express our requircments in the form that all,
transient terms must die away at least as rapidly as &&

{s real and positive) then we can apply the test of thedast

section to sce whether the damping is adequate w\ilhO\ut

having to find all the values of p which make gy zero.

For il the damping Is to be at least as rapid asg™, LS

not suificient that a rcal or complex quantity '« which

makes Zp zcro has a negative real parg;.it'must have a

real part less than —a, and therefore {aSe/z) must have a
wrwwr.dbrBGERETey tralipart.  In Jp we th%(;forc replace p DY
g— a), and work out the resulting/Zstiquation, expanding

powers of (g—a) where necesSuty by means of the
binomial theorem (Section 67w NI hus if &p —~ 1 4 38 +
40% -+ 2p? the condition of stability (for a cubic) is easily
met $INCe 2,3, == 12, aye; w2 but if we required damping
at least as rapid as e e would replace p by (g— b

and evaluare N
= 153(g— §)+ alg—1)* + 2(g—8)°
=P g+ ¢+ a2
and for thig €xpression, a,a, = 4 = a,d5 o that it is on
the border}i%&? actually e o
o Ka=(+p)(1+2p+ 207
50 that.\Zz, is zero when p = —1 or p = — L £ %i; the com-

pleshroots correspond to a transient term of the form
A% cos(it 4 ¢), and are therefore damped at the mini-
{\hum rate,
\.f Ny 142. FURTHER Exaxeres
o\ 4 Congider the circuit of Fig. 78. First of all, we must
N/ find the relation betwecn Vj and ip in the p-world 1n
the general case. To do this, we observe that the right-
hand inductance L and the terminating resistance R arc
in series, and therefore equivalent to a single impedance
pL+ R = 2. This impedance 2 is in parallcl with the
300
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capacitance G, so that

the two together are

equivalent to a single
A impedance z where

1 1
— C R
2 TR
_ Finally, the lefi-hand ¢\J)
1nducta}1(:e I is in series with z, so that the two together{ )
are equivalent o a single impedance { where A\
— 5T O i .__ﬁL.:tR-— ¢°{/
{=pl 4z =7plL —'_szG—I—pC'R 41 'mz\\
and now the application of Ohm’s m.%tgmim{;?ﬁrg_m
N

replaced by this single impedance £ gives ¢

Fiz. 7B

Fp — ip = O )
which reduces to » b O
i Vo VapLC A pER 4 1)
{ pALAC - p%@v@}f—k opL -+ R

We shall consider the casc Where a step-voltage V' is
suddenly applicd at timEN'= 0, 0 that Vp=TF. We
now have to express if I pariial fraction form, and in
order to do this weirst require to know the rcal factor
(b 4+ «) of the dénominator. In a numerical case we
could probahy Und this with sulficient accuracy by
fl‘awmg a g}‘{aph of the denominator as a function of p
or negativd Amlucs of p. (In Section 148 below, when
caling with numerical computation, we discuss how the
accuraginef an approximation to the root of an equation
E&n besinproved where necessary.) In general, we know
hat'therc must be at least onc real positive value of o«
¢ remaining factor of the denominator will then be
: X(p) = L2Cp? + (LCR — aL2C)p -+ (Rl2)
:ane this expression, when muliiplied by (p + oc)_gives
€ correct 43, p% and numerical terms for the denominator
of i, and will necessarily give the correct f-term as well

if & has been found with sufficient accuracy. There will
301
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be a term in i, of the form A/(p + =) whore A s now found
by putting —a for p in the numerator and in the factor
X{(p} of the denominator. Now consider she expression

iy A V@G pCR 1) - AX ()
PR (£ + o) X(p) O\
When we substitute the value for 4 found already, I}%“idy
Vi{e®'C — aCR + 1) o\

a0 ~ (LOR = al®Cla + (Rja)
it will be found that a factor (p 4-«) edncdls in the
numerator and denominator, leaving us gricxpression of

the form
Rp

N’

If X(#) has real linear factcn"s,\i; $, so that X{p) =

LA+ BY(p + ¢), this lasg “eXpression can be further
reduced to ol ¢
Q—RE O

S a-wy
GoBEEn T e e+
ot alternatively, since the denominator is now
A+ )b+ B)p -+ )
we can say \i{li}hédiately
e Ay VELO_fCR4 )
HF e (e —B)p+ By —ALW
7  VPLC—yCR - 1)
’§:\, (& — ) (B —y)p + ) L%C
QT s well worth verifying that in a particular case the
4% same result is obtained by both methods. In the case

when X(p) bas real linear factors, if we abbreviate ip to
P R SN 4
K 2R oy

it follows from the list in Section 187 that

i :f-- (z-—e*“)—{—-g (1—e—#) +§ (r—e™)

q02



N

\

HEAVISIDE’S TECHNIQUE

and if § and y happen to be complex (which means that
Yand { are also complex) this result is still formally correct,
but it is easier to combine the last two terms of i, in the
form obtained earlier

B +Q_  Rp4Q
X(p) LA{(p + & + o
We now choose A, g, v so that this shall equal Ko N

Apip + £} + ppo + v{(p + £)2+ 0% O
LAC{(p+ & + v} N

so that the Jast two terms of i; become m< 4

, ¢ -8 gi dbraulibrary.org.i
LA {z\e i cos wi 4 ue 4 gin eat _}u\-f?vdprau ibrary . org.in

\ b
We find, from the cocfficients of % and 1 In the

3
numerator, AV

Al p = o; Af 4 po -+ 2:"’{’5'—:.}?’; V('fz + ‘”2) ={
so that v = —d = QUE o)

b= R g e

O . . e It
A further exampleifvolving a circuit not mltlany']‘_; dfaqces
is discussed in Section 147 below; this example 1 “Z{&cr_
the applicatiom of Ileaviside’s technique to 1_u£ar d not
ential equatidg¥ with constant coefficients which nee
necessarily b of elcetrical origin,

The follGswing examples show the power of tlllqtlmﬁghooc}
described in Scction 140 to determine con Izllosinglc
?t%bflit}’. First, consider a system equivalent to
mipedance
= fF et st eoptHap TI8T5

. H =15

Here we have. in the notation of Section 149, &
%p=25,8 = I’, Ba=2. Hence thecondition ;< Pr< ms B

ion
IS not met and the system is unstable (or, the equat

Kp =0 has a root in p with positive real part). I n(;‘::;

Y
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on the other hand,
Zp = 5£° +p* + 20p? + 3p* 4 18750 + 2

we have oy = 1, &, =2, f; = 1-5, f, == 2+5 so that ag<C <
ay < f; and the systern is stable. N
Now consider the system for which

Zp = 585 + 14 + 20p® + 3p* + 1875 + .h\\\”

(This type of {p can occur with feedback amﬁhﬁcrs)
What restrictions are placed on A by stal;hht? require-
ments ?

Here o and «, depend on A, but 8. i‘b\a and B, =25
arc fixed. mlorazlsequaltoﬁ, iforagsg X 15+ A=0
or A=2-285; alorazlsequaltoﬁzlf 98 — g% 2 5«— A=0,

. 3 Hence for stab111t A must lie between I:25
wrorw dbra@zﬁgag‘fﬁfgh‘_g AN i g S
and o, are complex; if A==125, oy = 0°5 and w3 = 2'5-
For smaller A, mstablht}' \Arises because o, 1s greater

than §,. o

304



Chapter 9

MISCELLANEOUS TECHNIQUES

143. GENERAL OBJEGTIVE OF CHAFTER

E have now assembled sufficient mathematical ()
equipiment to be able to solve simple radio problemis™y
aud understand the kind of solution that is to be”

expected in many other cases. There are, however, 2
number of subjects, such as matrices, which, althopghmot
inevitably compulsory for a radio engineer, negertheless
greatly assist his work if he can grasp theveledigmlibthemorg.in

The aim of this chapter is to discuss ip{&liﬁlil}ﬂ a few
such topics, so that they need not be any lenger a hindrance
when the radio engineer suddenly find{ himself confronted
by them. Textbooks can be found{gasily which deal in
much greater detail with all thesegubjects, and others for
which there is no space here; it\is; however, the first step
in a new direction which is gften critical from the point
of view of confidence and“morale. We have, therefore,
tried to collect a few usefihsignposts for subjects bordering
on radio. X i\

T44. MATRICES:\‘}HE RuULES OF MATRIX ALGEBRA

The first yof these subjects is matrices. In its most
general forph,this is undoubtedly a subject best leftdf_iﬂ
pure mathématicians, but the matrices relevant to radio
have stidem more than two rows and columns, and those
discussed here never have. This enormously mmph{ihes
thelwhole subject, so that an engineer can learn the

..\rlgﬁessary technigue for radio purposes 1 a fcw_hotn:S-

\J) Consider then a four-terminal network as in Fig. 79
enclosed within a * black box ” B. We arc not allowec
to ask questions as to what the box contains, 011]}’}3“:l OZ_
what it does; this is known to us merely through OV er:he
tion of the input voltage ¥, the output voltage Vs

input current 7, and the output current f e 51::’];
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L ——— I consistentiy use the

O —>—0 sign convention of Fig.

V'T 8 TVE 79, 50 tham; L positive

if current is flowing info

o  em—) the neiwork in the
SR

dircction of the arro
but J, is positivesit
current is flowing ot
of the network in the direction of the arrow, QV; and
Vy are both positive if the upper terminal is at.g ‘higher
potential than the corresponding lower terminal. * If the
network is reversed, ¥, and V, are exchaneed, but 7,
becomes —1, and 7, becomes —Iy.  Astwining that the
“black box > B is a {inear network, the'principle of super-

Fig. 73

www_dﬁggﬁiﬂj},a Bﬁg_si,nand there will be,’t}m linear relations

¢tween the variables ¥, I, Vo aad' I,, We can write
these relations down by expressinglahy two of the variables
1n terms of the other two; thus\if we express ¥;and L in

terms of V, and I, we have R
" :..Qﬁi‘V 2+ a0y
I SenV, + @galy

where a,,, a5, 4, anid 4y are coeflicients depending on the
nature of the nety gk, but not on ¥, I, ¥, and L,

We must r&%r'd the two equations as helding entirely
within the fruworld, and V,, 7, Vy and J, as the p-world
counterpags.ef the input and output current and voltage;
the a’s mAy thus be functions of p. Under steady-siate
condiions at a fixed frequency w/(2m), p may he replaced
by jmSs0 that the a’s will depend upon the frequency.

“cocfficient g4, may be regarded as an impedance,
while the coefficient 9m May correspondingly be regarded

o985 4an admittance, or the reciprocal of an impedance.

N
%
\ }

" ay; and gy, are in effect pure numbers, in spite of the fact

that they may depend upon ,
Now in matrix language, the two relations expressing
¥y, I, in terms of V,, I, are replaced by a single relation

which is written (fl) = ( 4y 412) ( Va)

1 @y Gz ) \ 1,

QY
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Initially we regard this new way of writing the relation as
a mere shorthand., It is only a useful shorthand because
it is possible to build up an algebra of these new symbols

(Vl), (ﬂn G2 ) etc.

I @y Ggn

by means of which they can be combined. In Section 138,
when we frst cncountered the p-world, we Likewise con-
structed an algebra of impedances by initial arbitrary )
assumptions that Ohm’s Law held universally in.the
p-warld, that a single resistance, inductance and edpaci-
tance cach had a known impedance, and that there were
known rules for the combination of impedangesiin scries

or In parailel, wwy dbraulibrary org.in

We arc thus hecoming gradually morg, ccustomed 10
the fact that progress in the understafding of radio and
electrical problems can often by made’by initially taking
upon trust certain definitions and,rulés, and obeying them
implicitly, Our faith in the uséfulness of these rules and
arbitrary definitions is strengthened as we ﬁngi that they
first give us results whosgsgorrectness is easily seen by
other methods, and finally increase our understanding of
situations very diﬂicql{(to disentangle by other methods.

The above prclifpinary remarks should be sufficient
preparation for the following arbitrary rules of matrix
algebra:

{a) Expressions like

"\:\ ( Vl)a (a,u aw) and (£ Q)
AN\ I dz %az .
at;ef(':}”cd respectively column, square and row mai:rlct:;f:‘;
'ﬁo’w matrices will not in practice concern us here;
efinition and one or two fundamental properties arc
merely included for the sake of completeness. e above
(6) “The quantitics like Vi, Jy, @y €16 10 the frix
Matrices are called clements; their position 1 the I:t?iccs
as well as their magnitude Is significant. Two ?rl'ccs or
are equal if and only if they are both colurnn matrices

- din,
both square rmatrices, and elements 1n & correspor 3037

AN
KO
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. - . C
Position are equal. The significance of 1he “equation
we have already written, namely

(VI) - (“11 a12) ( Pe\
I thyy gy 1y Q
Is not apparent until we can define a procedure for, multi-
plying two matrices so that the right-hand side\'éan be
replaced by a single matrix. This multiplication procedure
will be given shortiy, £

(¢) Two matrices may be added if they aus of the same
kind (i.e. both column or both square] and“the sum is the

matrix obtained by adding clemews{gh corresponding
positions in the two matrices,

A %tﬁg can easily be mulbiplicd by a number;
“’ww'dbq?uﬁggﬁe ely“necessary to multiply every clement of the

matrix by that number,  Buf the multiplication of two
matrices follows a mere diffieult rule. " The important
point is that not all pairseal’ matrices can be multiplied,
and that if a matrix 4 eap be multiplicd by B, it does not
necessarily happen that B can be mulliplicd by 4, or
that if this can happen, the two products are equal. The
rule for multiplyigs two square matrices is

) 1
an 312) 5 4 bny by _ (@b anhy ayb, - “12‘5‘22)
Gat oz /6 Wy by, @by + agebay anbss + dpabi

whereal’s

ooy Gubm + @by @pobyy 4 anbr

511312 s [ T%e\ oy + oagb, tabrr - agbre
Gaibes -
O

. A square matrix can be multiplied by a column matrix
if the square matrix comes first; the result is a column
matrix analogous to the above when b2 = byy = 0, namely

( G118y X & 16y + dyafy
Byl o/ T \dmfy + agsy
and similarly a row matrix can be multiplied by a square

matrix if the row matrix comes first. A row matrix can
308
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be multiptied by a column matrix only if the row matrix
comes first, and the result is simply a number

1
{ran} X (,—_’;2) = 116y + Tl

(¢) 1tissoraetimes necessary to raise a matrix to a power,
and the usual procedure for doing this, applicable to ¢
matrices having any number of rows and the same number, § ™
of columns, is outside our present scope. However, thew
following ingenious special method, applicable to matriees
having two rows and columns only, i due , {0,\W.
Proctor Wilson, and has recently been published:# * The
key point in this method is that the matrix product

coshime—3)  sinh mu cosh (e 4ygfbrsmhimary org.in
CTeoshoo T Peosh " “cosh# ¥ "cosh v

sinh e cosh{mn—2) sinfbus,/ cosh (mt—)
pooshe  — cosho i cOS &’ cosh 2

reduces to the specially simph—; i?a;rm“
cosh{[m +— n]u + @} \ i _sigh(mjﬁ)ﬁ
SRR O RIE T AN

cosho cosh 7
sinh(m—+aju £ cosh([m + alu—2)
- cosh pe\J cosh

:I,thcn m=2,

and therefore rst putting m =«
© hy p s ﬂ=1and s0 0N,

# =1, then ma=iy, n = 1, then m = 4
we can dedets

{27 cosh{u + v) §i2h_“_ m
¢ '\$~ . —_— e P h p
N\ cosh cos
O sinh u 5:0_51_1_(3‘_—'_5’1
»\f':" jt cosh v cosh ¥
I\ cosh(mu + v) sinh mu
\/ T ooshr # “cosh o
sinh mu C_Oﬁ_him_“:_”)_
wcosh o’ cosh v

Tt depends upon the

We shall not prove this result here.
‘ dio Engineer Vol 24»

* “Some matrix theorems,” Electronic & Ra

No. &, 1957 309
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repeated use of *“ sums and products ** formule for hyper-
bolic sines and cosines, namely

_l_-} —

. o ., X ' ;
sinh » + sinh y = 2 sinh —21 - cosh =

sinh ¥ — sinh 3 = 2 cosh x_;—_y sinh XX

N

AN

X X
cosh ¥ + coshy == 2 cosh ~ _75_3_’ cosh " 47
4

Lo L& ,
cosh x — coshy = 2 sinh x—:—}ﬁ% xQﬁ}
- Sy.org.in N

www'd]gll%l_ﬂg?"ra;g “the corresponding grighhometrical formula.
These formule can be deduced dixe€tly from the definitions
of hyperbolic sines and cobines in Scction 100, The
important point is that we,can find paramcters derivable
from the elements of a 2 38% matrix so that the mth power
of that matrix can be Mritten down explicitly. The usual
method of raising a Wiatrix to a power involves explicitly
the difficult concept of latent roots, which we have been

at pains to avoid hére,
However, p€at the above result might be, it would be
uscless unless'we could determine the parameters u, v,  for

a given matrix

\ 4 - (‘311 lea)
\:\" Qg1 dpp
.&‘it{st, let A be the quantity a,,ay, ~- a,,4,, which is called

W\ the “ determinant *” of the matrix 4. Take out A as a
% numerical factor from the matrix, so that

"‘\‘ e/
\’ 1 s

4 = A2

The reason for doing this is that the determinant of
310
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cosh(z -+ 7) sinh #

S " o

M — cosh ¢ cosh

) 1 sivhe  cosh(u —2)
u cosho cosh 2

happens to be equal to 1 (this can be proved by means of
the formule involving hyperbolic sines and cosines already
mentioncd}., We now equate corresponding elements of M 4
and AjAt." This apparently gives us four equations for ()
threce unknowns #, o, 4, but any three equations derived )
from these four will be sufficient. By further use .of the
formule involving hyperbolic sines and cosines alteady
mentioned, we can simplify two of these equationsito

sh u == et G 2 EBN _
cosh # == """ A% ; wﬁ!\@@auhbrary.org,m

and knowing « and g, v is then casily;d}d’u.iccd from
a5 = p sinh coth v

and we thus finally obtain the;ir’csﬁlt

/ cosh(mipa)  sinhnd
A — Anj2 T cgthv cosh v
4= &inh n cosh(ny — )
N ? cosh o cosh

where u, v, 1 (iave the values just mentioned. This last

formula holdgeven for non-integral values of n: this ids
relevant ik Yconnection with the theory of cables an
transrmission lines. . _
(A matrix [A] is multiplied by a number k if all s
clethents are multiplied by & (as already mentione

udder (d) above)., The matrix thus obtained is the same

\ as if the rule for matrix multiplication given in (d) above
\/ 1s applied to the matrix multiplicafions

[4] x [K]or [K] x [4]

o= (5 5)

~e

where
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and this is one of the exceptional cases where the order of
a matrix multiplication does not matter. We have already
introduced the * determinant > of a matrix in {e) above
in connection with matrix powers. If two maririces are
muliiplied, the determinant of the product matrix is the
product of the determinants of the separate matrices an
therefore in particular if [4] is multiplied by £, the dereén
minant of [A4] is multiplied by %2, O\
{¢} The matrices o\

N
I a
(0 D) and 0) N
0 o o 1 D

are called respectively the null matrix atid the unit m atrix;

\a\.'\.w.r\a\r_dI;"ri-‘laﬁ{lll.%‘il:%r .i[?)l'gﬁHaHY denoted by L Fhiey correspond in
matrix algehr

to the numbers o and\vin ordinary algebra.

The above is a collection of the Tlcs of matrix algchra
which we shall require, but \efore we can apply them,
we need to know how matricésean be combined when the
networks with which they ke associated are connected in
various ways. For it was the possibility of regarding a
complicated nctwork as' equivalent to a single impedance
derived by the laws“of series and parallel combination
given in Section 438 that enabled us to use the gencralisa-
tion of Ohm’s Faw so cflectively.  Similarly, with matrices,
it is the pogsibility of reducing the complicated relations
within a four-terminal network ag in Fig. 76 to a single
matrix xolation between input and output currcnt and
voltage $hat makes matrices such z powerful tool for radio

and-electrical investigation. The laws of combination are
giver in the next section,

A
&
N I45. MATRICES : THE Liws or COMBINATION
N

We have already noted in connection with Fig. 79 the
possibility of expressing the relations between input and
output current and voltage in the form

Vi =ayV, + @ely

L =ayV,+ agql,
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for which the matrix *¢ shorthand » is

"y
L

(

The matrix

Aarflag A
i ¢\
is usually known as the ** A-matrix " of the network., IfN
the nctwork is passive and obeys the law of reciprocity,™
"
) Iz - &/
" A 0
A A-MATRIX a\i—ﬂml ,l.b
wiw dirdulibra Ei
4 1 [4]= (‘111 @z TVZ [x]= ngan) r?%mg n
Qremmissae] 23 32 - 'ﬂrnau -
Fig. 80 \J
®
the determinant of the A-malitx is always unity. Now

)=
A:(

21112
393

)

102

)

Vs
I

)

suppose that we have two-rigtwork

as in Fig. Bo.

-

(z)

implies

Then it&Lan

. "‘y\ _
H.lld', K A\ g
7 ) and (

s connected in cascade,

be shown by substitution that

-

Vs

“11“12) (
L] I

)

Zoilay 3 L
\<" , ,
o 1) (e “)
7 (P) -

th."ﬂ\ "Ax] is the matrix product [41 X
f}\l}‘f’prOduct rule {4} of Section 144.
f...:ISCXt; suppose that we have the two ne
Jin “ parallel-parallet *, as in Fig. 81.
Then first we need to rearrangc ou
connecting input and output ¢
single network as in Fig. 79, 50
¥y and I, in terms of ¥, and I, we

/2N

\

terms of V), and V,.

th

fel obtained by
tworks connected

r network equations

urrent and voltage for 2

at instead of expressing
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We find
I =y Vi A 510V
Ly = 3V + ¥V

or, in matrix notation, O
Il) = [7] (Vl) Oy
I, v, {E\ 4
where A
)y 3
{78200
S = aGgpfay, J1e = af &2 Lt
,\;\’;\ 12
d 2
Fn = — g B\ — &
www.dbraulibrar§lerg.in ; :"f\\" 19
and {,}\\'
[¥] = (,)‘11}’13)
WS\ D1 Pea

&N

Notice that if the network is passive and obeys the law of

reciprocity, so thatlthe determinant of the d-matrix is

unity, then y;, 2 — .. The matrix [¥] is called the

admittance or..,ﬁ}natrix of the network of Fig. 79. If in

Fig. 81, th.%;'é\ipf;er network has admittance matrix ¥ and
has admittance matrix

the lower o

:\\

Vo )\ 4
N/ [y] = ("711 7.112)
N ' W1 Mag

2\
\O
{\ HETWORK WiTH
A\ ADMITTANCE MATREX
~ & [}’] rh

i} by

NETWORK WITH
ADMITTANCE MATRIX

[7]

Fig. 81
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then for the combined network comnected in * parallel-
parallel > as in Tig. 81 the admittance matrix is obtained
by adding the admittance matrices of the separate net-
works, that is o say

J/Vl> o (}'11 4 Y1z + 7?12) (Vz)
\Il a1 F ey Yoo+ e A

N

AN

Th_e other important combination of networks is © series- ol
series ' as in Fig. 82. In this case our original equations \.~/

™

NETWORK WITH
IMPEDANCE MATRIX |

[7]

NETWORK WITH 3
IMPEDARCE MAT'}RX g

£] &2%
- [ ]*,‘. ——

Figy B2

for the single netwm:]g’tﬂ‘ Fig. 79 need rearranging so that

¥, and I, are exp’\esséﬂ in terms of I, and Jy; the result
can be written N
lt? 1)
O (Ve >i <] (fz
pedance

and r}Q}s‘:‘fﬁ.trix this time is called the { or 1mpee th
matrigs For networks connccted as in Fig. 82, 1t 18 the
z'mél,ﬁiccs which should be added to give Vi, Vy In terms
oy 1,.  The derivation of the Z-matrix from !;he: A-matlillx

m\lzs""ﬁimilar to the derivation of the ¥-mafrx ’frqm : :

“-matrix, and is therefore not given in detail; 1t B rfno;
convenient to summarise the results of such changes krob
one kind of matrix to another for a single net\'\fﬂrm oy
meuns of the Table overlcal. |A| means the dﬁtcrmltn}?at of
the A-matrix, { ¥} that of the ¥-matrix, and [{]

the Z-matrix. 315
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| 4 | r z i
A (“”11 ‘312) 1 (ﬂzs —|x1!) 1 (an —| 4]
31 8g) iaw I —dyq tay 4 1 — @y, :
i1 ey 1 ()’11 Y2 1 f oy ‘_,3’13) [
¥ 1)’31(_| Tl rn : Har s '|f]\'—_}'gl T | Q
¥4 .I_(-zn _|'\7-1) 1 (322 "312) : (/711 353) A o
T Nt —Zp ZIN—za Z11 LESREY SR

O
Thus if we know that the 4matrix of a network, is”

<

244 AD
= () &8

the Y-matrix is found in terms of théWr's by means of the
elements in the 4-row and the Z586lumn of the table,
www_dbaﬂﬂlﬁd'a&é{.org.m ’\ &

We are now in a position, wovbuild up the matrix of a
complicated four-terminal metwork by breaking it up into
a number of componcnt:.ijarts connected in scrics-serics,
parallel-paralle] or in gdseade, and this will be done for a
few simple but impertant networks in the next section.
The Table just gixen enables us to find all the matrices,
4, ¥ and 2, of{any network for which we know one of
those matrices{ $o that only onc matrix will be found for
each of the hgtworks,

Tab7 MatrICES OF ELEMENTARY NETWORKS

\ X X . .
Consider first the network of Fig. 83, in which there i

2 stngle series clement having impedance 2 and no shunt
lement. Then it is clear from Ohm’s and Kirchhoff’s

.'s'\Laws that
:..\’:o' I — I
Q ! = o o [ Z ] iz o
Vi — Ve =52 i
so that the d-matrix is v
Ve _ /1 2\ /V,
(#)=(5 DB — ;

Fig. 83
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p L Similarly, for the

: ——0 single shunt-element of

Fig. 84, having admit-

' tance ¥ (impedance

4 G 1/¥), the A-matrix is
found from

O : 0 VI _{I 0) Vg) "\:\'
Fig. 84 (Il _'(TI L o5

More complicated networks can be built up by placing-the
nctworks of Figs. 83 and 84 in cascade ina suitable’order;
we shall obtain the A-matrix for a gencral T-nqt@l‘k and
a general  mnetwork : v
only, and briefly con-
sider ladder networks.

Thus the T-network
of Fig. 85 can bhe re-
garded as threc net-
works i cascade,
namely (i) a network
like ¥ig. 83 with & N
mstead of £, (&) a,
nctwork like Fig. 84 {6\
is convenient ‘cog : admittances for all shunt CI?mcntsdarrllctlt
impedances forsall\serics elements, and this will bﬁ' 08
automatically..hcncefom'ard), (i) a network like Fig- ©3
with 2, inspead of <.
Now | \:z.\ 24 1 0) — (I 12 Z1)

:§(0 I ) X ( ¥ o1 ¥ I
andy

o m————g—

PBrary.org.in

:

Fig. 85

O (s )-8 )

so that, for the T-network of Fig. 85

(B)=(r+7= % & 5% ()
317
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Finally, consider a ladder néiﬁxﬁork like that of I'ig. 87,

,&gain from the
W\ bolic sines and cosines given in Section 144 (e).]

BASIC MATHEMATICS

Correspondingly, the
mnetwork of Tig. 86 is
also equivalent to three
networks in cascade,
namely (£} a network
like Fig. 84 with the
admittance ¥ replaced
by ¥, (i} a network
like I1g. 89, (i) a net- iz B\
work like Fig. 84 with AN\ ¢
¥pinstead of ¥. We thus find, by matrixéfultiplication as
before, that for the m-network of Tig, 86, )

1+ NS AL )(}ra)

N\
O

[ S— - e

N/

i

having n sections. The Admatrix for one scction {Fig. 88)
is already known, beingithe product of the A-matrix for
Fig. 83 followed by theutmatrix for Fig. 84, namcly

o 1+ Y2 2
@13 )

/o~
€3

Hence théd matrix for the whole ladder is ohtained
directly Shy * Wilson’s method [Section 144, (e)]. Its

determyinant is obviously unity as it should be, so we put

p 2T, coshu =1 + 1¥Z, coshv = (1 + $¥2)

an;.\ﬁnd that » happens to be 4z  [This can be deduced
*sums and products * formule for hyper-

Fig. 87
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The A-matrix for the whole ladder network is thus

cosh(z + Hu  sinh nu

[d] = cosh Ju P cosh fu
sinh nz cosh{n — Hju
peosh fu cosh u

Having Ehus"ubtained the A-matrix for the whole of the R\,
network of Fig. 87, any termination at either end can be QO
rt}ga_rded as a simple network in cascade with the netwotk
? Fig. 87, and we can thercfore easily deduce the Ak’
or ';hc whole system including terminations. N
rathgf tzilbovc examples must be regarded as\ilpstrating
o an fully exploiting the power of matix algebra
E simplify the theory of four-terminal” ¥ librytye org.in
-matrix associated with a given fopmeterminal network
gives us immediately almost all the essential information
Jabtut the network.
JaIn the A-matrix for
o0 Fig. 84, the element
8] mp was the series
impedance £ and the
V, element g, was the
shunt admittance .
Now in general there
- are  many circuits
O\Fig! 88 which can be regarded
as * equivalent” to 2
e A-matrices of all
the same ¢lements.
g. 84, be regarded
d the element @
If the network 1s

v,

Even foursterminal network, but th
7 }(132001\ ivalent circuits will all have tl
as tflgoe‘?len.t 4,5 may, by analogy with I'i
e scries-ness ” of the network, an
hay be regarded as the * shunt-ness o
\g,aj:ge’ ]thcrc is only one other csscntial element, since the
threcl CICment of the 4-matrix is determined b}{ the othE:r
Fig. - f a four-terminal network is synunctrical, as in
Fig. 85 when Z; = g, or Fig. 86 when ¥, = T we fin
re ardalc:i = Ggp. AN gnsymmemcal network can bg
ing cd as a symmetrical network preceded of followec
cascade by an ideal transformer of ratio (apftny)ts thiS
319
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quantity can therefore be regarded as the * transformer-
ness ” of the network, Thus the four elements of the
A-matrix of a network give us uniquely three essential
items of information, namely ils * series-ness ”’, ** shunt-
ness >’ and ** transformer-ness . Any of the other matrides
would serve equally well, since the Table of Scctign, 145
cnables us to convert readily from one matrix to andgther.
147. LINEAR DIFFERENTIAL EQUATIONSSWITH
CoNsTANT COEFFICIERTS AN °

W
This subject is closely related to thc"f;‘.\ p-world ** con-
sidered in Section 138, and to illusttafe and explain this
we, first shall consider gnvdetail an clectrical

&

Consider the circuit of Flg‘ﬁ% {a), which is a highly
idealised form of the circuit.gommonly used in the line
timcbase of a television yeeeiver. A practical circuit has
many added complicaidn’ which make it less amenable
to calculation, but itfUhctions basically in the manner of
the idealised circuit,™

Initially the géirenit is < dead ”, but on clesing the
switch S, th@{'bt}ttery E is connccted, and currents iz, %
and i ﬂoé\\ré’s‘pectively in L, ¢ and R. Sincc we are
ignoring/all resistance in series with £, €, and £ {which in
practige would inevitably be present in some degree) we
have\by Ohny's Law
~0 E — pLizy = o

\’Qfor the inductance, if iz, is the p-world equivalent of the

—-—
-
&
By
-
o
=
-—
g
D]
it

lj, R lin v

-
]

(2) (b}
Fig. 89
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current £y, Consequently,
iy = Eipf,
and so iz = EIfL

Now for the resistance, clearly iz= E/R, while for the capa-
citance, writing 7., for the p-world equivalent of 7, we have

iy — pCE = o

N
2\

but here we arve unable to determine 4 dirccly by meang )

of the list in Section 138, If 4, had been CE, 4, would
have been a step-function like 72 Now we have alscady
scen that multiplication by p is closely associf}l:é\d'x with
time difftrentiation, and no change occurse3f Ja step-
function except the very sudden one whenh=o0. We

can therclore expeet that 7, will be zeroadhilatilibsarscepg.in

¢ == 0, but that it will behave violently at¥ = o; theoretic-
ally, it becomes infinite at £ = o, buf¥in practice various
circuit resistances which we here igpore would make 4
{inite and last for a finite time instead of for zero time.
After the switch has been closedy € thus becomes suddenly
charged to the voltage ¥, R draws a steady current E/R
and 7 takes a current LA time £ This current, rising
lincarly with timne, formg®a ‘part of the scan stroke. When
it has reached a 1‘)artioqﬁl}r value f;, the switch 8 is opened,
and the circuit bedemes that of Fig. 8g (8), in which we
regard zoro thmd as the instant of opening the switch;
initially, therefore,in Fig. 8qg (b), iz has the value i, and
the voltage 4exdst C has the value 8y —= E. _ .
Let the voltd e across the circuit at any later time £ bf: I/
Then niflalfly ¥ is positive (if £ is positive) and this is
mdica}&"in Fig. 89 (b}; the arrow indicates that the
upper horizontal line has the higher potential, assurmllgh
tobe positive. Now if we apply Ohm’s Law and the
m{{mdamﬁntal riles of Sections 126 and 127 with the sign
\gonveition of Fig. 8y (#), we find

V= Ri, =L -fft"*
and av i,
TG

321
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Also, by Kirchhoff's Law
iL _’_ 3‘{: _'_ fr ==

Hence _ ir + CQ’! + V..,
dt R ~
: d%p,  Ldin _ \
or 1;,+CLF2+RE—0 "\’Ty

In a case like this it is safer to stick to the fund&?}i}‘ntals of
Scctions 126 and 127 and not venture intelhc f-world
until we have expreassed ihe circuit relation Nindthe form of
a differential equation with known initial éenditions: here
these conditions are i, — 45 when t\“}), and ¥ — g or

www. dbraulibrary.org.in [dtf' ] ,’_—\\;‘l
et t= a&(' L
Now let ipp be the p-\w-'orldz'ﬁoﬁntcrpart of i;, Then the
counterpariy of A
L gy’
Rl

AV .
are respectively [(seedSection 158)

B\ L [ 2
fx‘gi{’\w\— #lirli=o } 2 {fflw _f”oj’

4%y
and CL P

Q di 1
A\ . R 7. o
L D>

x:\'wi ) \
| OV e Jllf,zgw — - f’LLJ X
j “:’\ so that the p-world counterpart of the differential equation
| Ny for iy, is
R |
f L " o ph
§ 2 f Py
| . _ #oy -+ Cp g + 7
, so that fpp == e e
| g b

CR Lo

[ ]
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Now let
we? = 1f(LC) 2 =1f(2CR}) o = (at — o)}

since in practice «, is usually greater than «. Then we
can write

: RIS TN 3 Ke
iy — ip(p + ) + w(“"o + 7 )f’w R
(p 4+ «)?+ w? N \/
z‘x“'
so that, from the list of Section 138 N

iy, — ipe cos wt + :’ (ocfn + %) e sinvoln
W, \aulibral'y_org_in
In a practical case we might have L = 40mH, R = 200kQ,
¢ =50 pE, 4y = 0:3 A, 75 = 300 V2
Henee  wy = 1/4/(LC) =1 ;{435%_“%0—3 X 50 X 10737
= 7'0711 34?0’"

x — 1/{2CR) :3%30‘-19 X 2 X 109 = §xX10*

= V{poa¥) =/ (50 X107 — 25 X 10°) =
\%49-7%10“’) = 7-0534 X 10°
A

g
i

orfw (550070887
¢/
E:dq{L}: 0-010635

80 q\’:}%'g € cos wi + _
‘Q\ (0% e 0-070887 + 0'010533) =% gin wi

:”\\2. = 0'3 % cos wt + 0031899 e sin ol

\/ The voltage across the circuit is

di

v=Lg

Now let ¢ be the angle whose tangent is wf FB?‘;ldé ;P?::f%f;

whose cosine is wfw, and sine 1s afayy
423
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numerical case). Then

v=—0L {iﬂoc €% cos wi + fwe* sin wi
wf .y .
w. —_ —xt .
- p” (a%o -+ L) e~ sin wi 2\

( oedy - b‘o) €% €08 wi ! A\

&\

L o\ ke

L 3 N/
= Lwn{iu et cos (wt — ¢) + ....( )

4
\~"‘\

Y

W
v il
-; (mfo —|—% ) e sir(tyh \J ) f
www'dblgﬁgbﬁ“ b ',mthis reduces to g @y it should when we
substitute for cos ¢ and sin g \We also notice that wc
could obtain dig/di from iy by/multiplying by —e, and re-
placing wf by wf -- &, but Icaving of alone. This suggests,
a}sl we can verify by plodding through the differeniiation,
that &Y

R
«al
e

d . Y
.d? = Lw02{30 E_MEQS(wf_2¢) —-—é aty 4 i? €~ sin (wt—Qt;fJ)}

N
Q%

dv
so that 7 ——\; and » has an extremc value when

»

SO tan (wt —og) = — T
,\;,,.‘ N wly .
:"\xl o = wl
,‘{{the term zofwl. could be neglected, this would give

N
S

O but in general wt — 24 is 2 negative angle betwecn ©
Q and —¢ and much nearer --¢, so w# is somewhat greater
than ¢, and in our numerical example will not be very

. . T . .
diffcrent [rom 2—whcn # has its maximum numerical value.
The actual valuc of ot is 87° 587, or 1- 53531 radians [and

wl must be expressed in radians if we want to ind ¢ or %,
though we may use degrees for cos (e — ¢} and sin{wf —9) |-
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It follows that
[
Upge 7= — 0204 X 7-0TII X 107 X ¢ 193581
% {0'g cos 2° 1’ + 0-03189g sin 2° 1}

=--7591 V
Thus the peak voltage has the opposite polarity to that of
the initial voltage and is very much greater; it oceurs,{ N
approximately a quarter of a cycle after the start of they
oscillation, when the energy initially stored in 7 has beetr
transterred, apart from some loss in R, into C. NG
If left to itself the circuit will oscillate with sziand »
varying according to the equations we have obtaiﬁed until
all the encrgy has been dissipated in R. In\practice, the
circuit is allowed to oscillate freely 8 gb@&fqﬂlbﬁaﬁyagg-m
only, unti] » has once again its initial valtg” The switqh 5
of Fig. 89 (@) is then closed once mgs€\VTo find the time
when the switch must be closed, & have to solve the
equation N
ty == - Lesy 4 fpe * cos (w3 ) +
L W

) et sin (wf — ¢)}

1/ . | o
p ("“0 D
in our numerical cdsé.” This appears to be insuperably
diflicult, but we cﬁ\kriow that the relevant wt cannot dlﬁ‘ﬁ:r
greatly from wdipce otherwise the right-hand side of I:S:s
cquation will”;We numerically much greater than the
lefi-hand side,” We can obtain an adequate approximation
by expafding cos(wf —f) and sin{wf — ¢}, replacing
cos uﬂﬁﬁf\’:;l, sin wf by (—at 4 ) which we shall call —%,
O\ —arw . .
andie by ¢ © ( I*aj) and neglecting x% and the
4 .\’ 3 L)

_\4uation will become lncar in x; altc_:maﬂvely, we can

\ calculate some values of the r ight'ha“d side of the C(gat}on
for et in the neighbourhood of =, and plot a curve. :iwmg
determined x and hence £ as (7 {g);‘ wy OF havmg ettii;;
mined { graphically, we can substitute 10 the cq?}?at s
already obtained for 4. #, is negative at this time,

to say, it is in the dircction opposite to the arrow In Fig. 89
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When the switch 8 is closed, the voliage across € is equal
to that of the battery for we have chosen the time of
closing the switch to make this so. The current therefore
flows mainly into the battery, but some is taken by R,
The current then decays linearly 10 zcro 10 form th
first part of the scan, and when it reaches zero wc are
back again at our starting point. Theve are Jush two
differences at the start of (s second eyvele of evmjat’.s?"?l'he
switch 8 is already closed and € is already chardeft (o the
battery voltage. As a result therc is no tmitdal rush of
current into €. O\ ¢
We started by assuming an inert circyif d0d first closed
the switch somewhere towards the middielof the scan state.
Afierwards we just open the switchN\once per cvcle to
w“’w‘dbr&ﬁﬁﬁ't%%@%ﬁ%%?bzﬂck ang close it again after T.]E(‘: {Iyhack to
start the sean, R
In practice, the switch is pcpliced by a pair of valves,
usually a pentode and a diode, and they are both cut-off
during flyback. TDhuring Ssean  their internal resistances
modify matters appreeiably. The analysis piven to
illustrate the applicaioh of mathematics 1o a practical
problem is much, nearer the truth during flyback than
during the scan perfod.
Our second@sample, Lypical of non-electrical problems,
18 to solve t‘h\e\é’c’luation
N by . dx . ) .
@7 @ tsgew—sing
given™that x =0 and dxfdt = 1 when ¢ —o. First,
sippose that & is the p-world counterpart of » according
\Qm" the list in Sceiion 138. Then the rule [or obtaining
W\ the p-world counterpart of drxjdir is also given in Section

. dx
198, so we have, since %0} = o and (QT:,‘ =1

'y
o has the counterpart g€ - - p.0
d2x o
(Z’J_EI EER 31 N f)-x _'p2‘0 - p.I
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The p-world counterpart of sin 47 is obtained direct from
the list, and is 49/(p* + 16) so the p~world counterpart of
the: whole equation is

(p%% - p) + 3p% + 2% = 4p/(p* + 16)
or
] A

- 4 L (
B R RIS R

\

v
We now require to split up £ into the sum of 2 numbet of
terms which are counterparts of known trmfz-funcglgns,fln
the sarmmc way as we did in conncction with the Serics
osciilatory circuit in Section 13g. As in thag gase, it s
convenient to keep a factor p outside the expressions to
be sphit up into partial fractions. \e\ftéVﬁYxﬁ,{il?}‘aullbral y.org.in
<&
I ..L_‘H 3 I _
-, — — = = AN T i
T (p+2) T @+ 0 (-1 AT D +2)
TR Y

PRIy =

1

™
N\

and A\
. I__ L _ . 1. . +
(1 1) (p4-3) (ko) o+ 1)(— 1+ (136
NN T A
(L3t 1j(p+2){4+16) T p7+16
Multiply thfbf;gh this last equation by {#* + 16) to get
4 and B&yve have
\x,\;I #2416 prLab L Ap - B
G T "By T T
\“S:(;W put p == 4jso that p* -+ 16 = 0, and we have
e ! —4jd +B
@i+ Daj+2) " Y |
¢ to that used in .SCCtIOlIl 159
sin Qf to the circuit of Fig. 66,
therc called € and D.  Since
©oae7

"This procedure Is analogou
when we applied a voltage ¢
and required the quantitres
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the left-hand side can be handled as in Section 58, we hay

L o Ar-agde-ag
(@j+1){asr2) ~ (I7-4701- 47,02 r4j){z—4])

. 2—12j—16  —i4--13j ~
{1*+4%)(2°+ 4% 340 .
so the real part, B, is --7{170 and from thedwaginary
part, 474, we find 4 = -- gf3g0. We have ndw succeeded
in gplitting the expression we had for 5, the }L-jj{r_)rld counter-
part of x, as required; we obtain "\ 3

] ! R SP"\\\’ 7
4P L7+ 20{pta) 340 i6)  170(ptH1b)
www . dbhraulibrary.or ,h;l ; x\\¢
+ p [24_‘_ 1 p'—i-'si] O
and, collecting the termgin bip--1) and pi(p + 2}, we find,
5.2 ONBp 3 7 Ap

17(p4 1) [5lp2) T 850p0416) T 70" pTE6

so that, from@he list in Section 127,

+) _
x\é 2! et ——Q e 3_ cos 4 — —_i sin 4f
s L 5 85 170
and\@ve can easily verify that this expression really docs
sawisfy the original differential equation and gives the
\Gorrect initial values of x and dx/dl,

,\\“ [or the _bt:nr_‘ﬁt of those who may have come across the
N more usual way of solving lincar differential equations by
AN means of “ particular integral @ and *f complementary
Vo \ud function ”, and who may cxpect the solution of a linear
\ / differential equation of the second order to contain two
arbitrary constants, we must point out that the sojution
given above has automatically determined the values of
the arbitrary constants required to satisfy the initial‘
conditions. This is just one example of the power of
Heaviside’s method, and explains why we have attached
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so much importance and devoted so much space to it
At first it may secm formidable in its unfamiliarity, but it
repays abundantly the initial effort required to learn it.
The reviser of this book regrets that he did not come
across Heaviside's technique carlier, and hopes to save
some at least of his readers from a similar mistortune.

148, NumeRicAL COMPUTATION N

N\

There are several textbooks on this subject available for o \
computers, that is to say, people whose main occupation ™
comsists in making numerical calculations and bandling
various types of mathematical processes and formul€ly Tt
is not the object of this section to ¢ tepitlpgny such |
textbook, but rather to lighten the labour of an engitieet
who occasionally and incidentally may have 0 make a
reasonably straightforward computation ,Hut” who may
waste much time in the process if left noqb d entirely for
himself. In many organisations nowadays, particularly in
largc ones, desk caleulating machiges.and even elcctronic
computers are available, and pedple trained primarily as
mathematicians are finding that” their services are now
much more appreciated tham,‘say, twenty years ago by
organisations whose primafy, object is engineering.

Tf a2 mathematician-9x ‘computer spends much of his
time in dealing wi ( wdmerical computation, he cannot
help getting to know'many useful and labour-saving tricks
which would oply.be learnt painfully by an engineer who
might have o use some of them for only one particular
caleulationgyand would gladly forget them a week later.
Hence théfifst suggestion to be put forward on this subject
is thapmathematicians and computers should be consulted

whegever possible.
,Bven the arrangemen
“ivwhich the operations are per
the time taken, and in some ca i
with and without a desk machine is much greater than in

others, For a calculation which consists entirely of
products, powers and quotients, where the final answer 1s
only required to two or three significant figures, a slide-rule
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formed, may vitally affect
ses the difference in this
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is quite adcquate; excessive errors arc likely to ace umulate
in calculations where there is addition and subtraction,
pariicularly where differcnces  between nearly equal
quantities are involved, even if the slide-rule is not in-
adequatc because four or five significant figures are
required. .

For a large-scalc computation, the possibility of usthg
an electronic computer must not be overlooked; thepgare
a number of processes, such as the solution of PN
simultaneous equations in 7 unknowns when g3 large
(say 10 or morc) wherc the “ programme,” néeded for an
electronic computer is perfectly well known, and wherc the

chine time requirced is astonishingly smﬁtﬂ,\ and thc cost

N\

ITL
w“’w‘dbﬁ%’a&'ﬂﬁ%‘ﬁlé’r&@h at prices of the order\df¥ 30 per hour of

l“\'
h
\:

machine time. An electronic compuier may be the hest
and cheapest way to obtain an apSwer in any calculation
which can be made iterative or re%etitivc, even if from the
point of view of a human caletlator, the process might
seem to be very roundaboutiand tedious.

Anocther possibility, wﬁicﬁ should not be overlooked
where the same typc ©f calculation has to be repeated
over and over again“but the accuracy of the final answer
need only be within a few per cent, is the design of a
nomogram, whieh performs the caleulation geometrically
in the genéral“ase. Once the nomogram is there, an
individualy example of the calculation is worked out
instantly, by means of a ruler. Thus if we construct a
nomogram. for the formula

“\'\ V == aDN/12
Were V ft/min is the cutting speed of a lathe spindle,

" \ in. the diameter of the part to be turned and N rev/min

the speed of rotation, when we require the value of A given
say V == 100 fiymin and D =16 in,, we need only join
the point marked ¥ = roo ft/min on the V-scale of the
nomogram to the point marked D = 16 on the D-scale
of the nomogram. The line joining these points will meet
the N-scale of the nomogram in a point which determines
the value of ¥,

The design of nomograms of this kind is much easier
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than one might expect. There is no further space available
to discuss the matter here, but the nomogram for
V' =7DN/[12 and a full discussion of the construction of
nomograms is given elsewhere *

Once we have realised that there is a2 number of
calculations which ought mainly to be handled by or
under the guidance of mathcmaticians and expert com-
puters, or by means of nomograms, and that engineersg\J)
should consult mathematicians whencver possible, and ngty™
overlock the possibility of using an electronic comppte}',
there remain many calculations which the engingex “Can
tackle for himself with a little encouragement @d *help,
but for which he is likely to take several timég 3 long as
he need take. Suppose for cxample we yyish calculate
for various values of w WWW',\FE,'U thraty org.in

1 S\ N
‘T(w) —I “|‘ \/Qw—-ﬂ- w? + ;ﬂ—'\/?w —sz

then we first notice that r{w) ifuhchanged if —w is put
for w, in other words, v(w) isngn ““even ™ function of w,
and if we happcned to knew a series (cf. Chapter 4) for
r{w) in powers of w, oply*cven powers of w would be
present; for such a fwiction drfde s necessarily zero
when w = 0 [provid"éa‘ that, as in this casc, the function
is continuous and’\l{}ss"a derivative when w = o],  But also

(1,920 + @) {1 — v/20 + o)
AN — (1 + 0Y)? — (4/20)?
\:\“ =I—|—2w2—+—w4—-2w2=l—}—w4

50 th&[\ 7{w) can be rewritten
Yy (=vaebed) F(dveete?) _, otel

:;\. () - 1+l =2 ot

Thus, in this case, a little preliminary manipulation of the
function has greatly simplified it. This will not always

% Apags or Nomograms, by A. Giet. English edition publi§hed by
1liffe & Sons, London, 1956, This book is written by an engineer for
engineers, unlike most books on the subject, which take a more mathe-

matical viewpoint.
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happen; what matters is that we should be aware that it
can happen, and that we should not take for grznted that
the form in which we first derive an expression iIs the
best for computation of it. Time spent in investigating
the effect of simple manipulations like this is seldom wasteha
As we now have 7(w) explicitly in terms of w?, it is worth
considering values of w in any particular region of jAtdrest
which make «? rather than w a simple numbeh, “e.g.
w? = 0-2, 0+4, 0-6, 0-8 and 1 if we arc particularly inter-
ested in the region 0°4 < w < 1. N

In the case of a calculation like *O

K
Y =324z g+ 24/ (x2St )

it pays to have numbered columns for' e various quantiies
www,dbrﬁy&h :

N
%
\ )

VB, b to work vertically, mét horizontally, as iong
as we want, say, a gencral idea8{ ;%c values of y for integral
values of x between 1 and 10{(pr any other sct of cqually-
spaced values); if later wi* require isolated additional
points, the advantages of Working vertically will be Iess
marked. Thus our coliimns in this case might be

Iz 3.0 4 5 6
¥  x? xﬂziz.:s\—]-g xE—xt7 24/ (x*—x+7) J
2+3] (z—1+71  [2v4l  [3+s]

KHOWng'ﬂ};,’ we write down x? (Column 2) and while this
colunmds’ being written, the object of the calculation and
everysubsequent step of it can be completely forgotten;
wes merely concentrate on correctly writing down the

,\s\ﬁuércs of integers, and if we have made a misiake hecausc
..\ 1

e telcphone went, we shall notice this immediately,

% because this particular process of SQUAring GCCUrs 50 Very

frequently.

Next, we have to concentrate, to the exclusion of all
else, on the addition of the first two columns in each row,
and adding 3 to the result, writing the answer down in
column 3. Similarly, for column 4, we concentrate on
subtracting column 1 from column 2z and adding the
number 7. For column 5 we concentrate on taking the
square root and doubling; the entries in column 4 will
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all be two-figure numbers and therefore tabular entries
in four- or five-figure squarcroot tables, It may be
easier to have an intermediate column 4a in which entries
in column 4, being whaole numbers, are multiplied by 4;
column 5 will then be the square root of column 4a (which
will be a three-figure number and therefore still a tabular
entry). This suggestion may scem trivial and unnecessarys
it Is made because of the reviser’s bitter experience that/
the more one can avoid thought during the actual carfying
out of a computation, the more likely one is taSavoid
making stupid mistakes. Finally, the entries ineolumns 3
and 5 of each row are added to give the required value of y.
Next, suppose that we require to three gighificant figures
the valucs ol www,{brauljbrary.org.in

z = (100 + x)¥ — (L\oo\—- x)b

for x between 0 and 10, If ¢ ipgyfive-figure tables give
105% = 10247 and g5t = 9-74H8, and the difference,
0500, is reliable only to the«third place of decimals, that
is, to the third significant figurc in spite of the fact that
we used five-figure tablesy If we had used a slide-rule,
we would only have _been sure of the first significant
figure of z. L

Since z involyés )powers, onc possibility is to use the
binomial theorém (Scction 67) but we have to be a little
carcful since™we are dealing with a non-integral power.
We cannot2pply the binomial theorem direct to (1004-x)%,
but must §rst write it in the form 100}(1 + 0-01x)% when,
as heré) is between 100 and —roo. [If x had been
outs{"d"\e these limits we should have had to write

Q)

¥
(100 + x}t = x’}(l + 129)

and the series obtaincd would have been in descending,
not ascending, powers of x.] We now find

(t00-syp=ro| 1+ oo+ i o4 . ]
333
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and similarly

(IOO—x)‘}zlo[I—%(O'OIX)-{--%-'—(QT—%)(O'OIJC)Q— .. ]

Hence, subtracting, \

N

2 ¢ A
z:zo[% (c-o1x) + %(_i)‘ .(_Tf.)(o‘om}sn;—. . ‘“\}

since the even powers of x cancel. For theoranke of x
considered, the x3 term is relativcly unimpattant and the
next term in z, which involves »%, is complelely negligible.
If x has the extreme value 10, 2 Is 20[0;0g%t o-oo00b25] —
www.dhrgglibsaryiatk herefore the first tepmigives z correct to
4 significant figures over the whole range of interest.
z thus varies linearly with x to a‘high degree of accuracy.
We shall sce later that most, éxpressions involving x can
be regarded as varying lingatly with & for a sufficiently
short range of x. N
In the case of the patficular expression ¢ we have just
been discussing, thepe i$*another useful irick which enables

us to obtain 2 quickly and accurately for any value of .
We have )

{{100 —[—:x)ja'\o— 2100 —atz
= {(mo’:i— £t + (100 — x)#} {(100 + x)t — (100 — x}4}

a‘;}mo + &) — {100 — ) = 2x

.'ébs hat
RN . 2x )
O 27 o0 + %)% + (100 — 2)*

Y

N

In this form of z, we can safely use a slide-rule for deter-
mining (100 + x)} and (100 — %)% if we require z to
three significant figures, as we are now concerncd with the
sum of these two square roots instead of the difference.

In general, it is easier to handle an awkward numbet
like 4/3 if it is in the numerator than if it is in the denomin-
ator, thus (1{4/8) is usually better written as 4/3/3 and
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(1/{(a+b+/c} is usually better written as (a—5+/c)/ {a?—5%].
Sometimes it is highly desirable to obtain accurately the
value of a square root. It is worth mentioning in passing
that if ¢ is an approximation to 4/, then

o) s
¢\

is a very much better one, correct to roughly twice as maty
significant figures. G

Finally, suppose that we have to find a positixé, value
of £ satistying the equation (Y

k ( . 1:58 @di\gﬁgulibl'ary.OI'g.in
AN

" 0175 + 0-58k2

At first we are fempted to give up{tﬁe unequal struggle

and say that it is impossibld X6 do this because

clearly the above equation, when® multiplied through by

(0°175 + 0-584%), will be cubic'in £ But a closer mspec-

tion shows that as & incréases, the second factor of the

left-hand side continually\ihcreases, since the subtracted

expression 1-58[(0-1§; y- 0:58k%) continually decreases,

while the factop\k outside continually increases.

The left-hand ¢gide; however, remains negative until

{0-1%5 + o- 58k2\){reaches the value 1-58, which happens

when &2 = {358 — 0°175)/0-58 or k = 1-56. For greater

values of % the left-hand side is positive and increases

steadily/with £ It becomes nearly equal to k when k iz

large.(\As it is a continuous function of £, it can therefore

pags\thirough the value o-625 only once. We must now

avaluate the lefi-hand side for some trial values of £ until

3ve have one value of £ for which the left-hand side is
“glightly above o-625 and one value of & for which the
lefi-hand side is slightly below o-625. We find k=2
makes the left-hand side o-733 while & =19 makes
it 0-577, As the left-hand side is varying rapidly with
respect to k, and is mot mear a maximum or minirum

value, we assume that it is varying linearly with k,- and

that a good approximation to the correct value of k will be
335
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' o-f25 — 0577
ko1 925 T 991 _ 1.
9+ o7g5 — o577 X @ 10

= 1929

Substituting r-g2g for % on the left-hand side, it reduces O\

1o 0°623. In this case we can therefore take 1-929 as a
sufficiently accurate value of %; if we required a pQre

accurate value still, this would be O
o-b25 — 002 P\
1929 + oﬁ X (1929 — 1°9) FR"930

X
Thus we have found & by means of the'"f’z}:t that most

www.mw ymregarded as varying lidearly over short
his

ranges. act is essentially a consgquence of what is
known as Taylor’s Theorem, that iff{+) is continuous and
possesses derivatives up to andMhgluding the nth in the
neighbourhood of x = 4, then W/

=@ + 0% + “ 30w +

(x— gyt

+ = f;(i-‘i“) (a) 1 (":;_;a)r}n {a + 6x — Ba)

where f'(a) i& o first derivative, f7(4) the second and
f®{a) the ythM\derivative of f{x) when x =a # is an
unknown fragtion between o and 1, but in practical use
of the th€orem one arranges that (x — a)7fn! shall be
sufficiently small for this last term to be negligible. If
them\the term f"(a)(x — a)%{2! is negligible, and later
termi§ still more so, f{x) does vary linearly; it is thus

Jmerely necessary to make (x — a) sufficiently small
W From this theorcm follows also Newton’s method of

approximating to the root of any equation (which nced
not be algebraic); if the equation is f{x) = o and a s
an approximation to a root of that equation, & bcing real
or complex, then

A, L)

Sfla)
is in general a better approximation. This result enables
336
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us to solve many equations for which an approximate
§c31ut10n is known, for example, because we have some
idea of the solution to be expected from experimental
resr,llt% or the previous solutien of a similar equation.

Il f"{a) = o0 and f"{e) is not zero, so that f(x) has cither
a maximum or a minimum at x = a, Taylor’s Theorem
shows that in the immediate neighbourhood of ¥ = g, the
difference f(x) —f(a) is proportional to (x —a)% This
ts thus the exceptional casc when we cannot regard f(x) as
varying linearly over a sufficiently short range. C

el
S Y

N
2N
\

149. “ LEAST SQUARES ", RANDOM VARIATIONS,
STANDARD DEVIATION &

It often happens in experimentalworkbtisibwa-have.in
reason to believe that there is a lincar relation between
two variables x and »,* and that we seek‘to*determine this
relation explicitly. If we plot the sgorresponding values
of & and y obtained from the expehiffient, it is unlikely
that the # points will lie exactly,apon a straight line, but
&8 we shall fairly easily
be able to determine
by eye a straight line
{ “which lies evenly
among the points
(Fig. go). If the
dependent variable y
is plotted vertically,
we could determine
the distance 4, of the
rth point above or
below { (measured in
R\ _ y-units) and evaluate
AN Fig. %0 di+d+ .. + du®s
#\\#/ quantity which we shall call §. Now it is possible to
\/ calculate m and ¢ so that if the d’s are measured with

respect to the straight line I whose equation is
y=mx+te¢

* & need not be the original variable X measured; but may be some

function of it, such as X* or log X and similarly for s.

¥
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then § is less for I than for any other line, including L.
It is this property which gives the line {" its name of ™ least-
squares line . The equations for m and ¢ are

" n
Dy =mZxtn
Fuou] r=1
N
oA\
NS ©
Ex,y,—mﬂx,z—{—cﬁx, .\
=I r=

r=1 and

a
<

where the symbol 5 means that the ,véﬁable which

¥=1I

\/

www. dbraulibrary.org.in
D

follows is evaluated for r = 1, 2, /A7 1 and the values
obtained are added. These equaﬂons determine m and ¢
uniquely, so there is onc definiteNine #, to which a line /
obtained by eye is likely tq be a good approximation.
The value of {§/(n—1)}* forithe line £ is a rough measure
of the * goodness of fit 2 & v

Now the n pomts wi‘ll.not be at equal veriical distances
from the line ¥, and in fact d,, d,, etc., will vary in a
random manner, { There will probably be many different
causes of this var}atlon no one of which contributes very
much to it, ¢ can therefore expect the values of the d’s
to be ““ nefmally distributed ” about zero, and we shall

consideg‘ Mriefly the properties of such distribution.
In, @ normal distribution, there are thcoretically an
ﬁQit\c number of examples of the variable in question {in
&Q[s case d) and they may be concentrated near the mean
ue or widely scattered, but very few examples have
'.f Vextreme values in either direction. Suppose that we
L consider a set of N values of a random variable x which is
\ 3 normally distributed, and that the mean value of x is X,.
Then the number of members of the set for which theoretic-

ally we should expect x to lic between % and (£ + &) is

M 1
Var €

— (=% 29‘]
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pravided that J is sufficiently large, and £ is sufficiently
small in relation to ¢. The quantity within brackets is
tabulated by various authors as a function of (£ — xg)/o.
The total number m of members of the set for which we
should expect x to lie between 4 and £ (k! > £) is

N (Ri—uxq)fe
m= j‘ e %2 gy
V2T J s

and the integral is also tabulated, so that we can evaluatem
immediately from the tables given £, £, %, o and\ M.
o is a parameter called the  standard deviation  of the
niormal distribution, and measures the scatler) of the

N

2N

'\

distribution. Only 2:275% of the npnbs a‘iﬁﬂh“a%&‘}i'_in

Lution have values of # exceeding x, + 26;,0°135% hav,
values of x cxceeding x, + 3¢ and about’ 0:003% have
values of x exceeding x, + 40} thes ?hémbutlon is sym-
metrical about the mean value %. ¢ ™ .
Now we have to consider theaéverse problem; given a
set of V¥ values of a randomly-yarying quantity &1, % - - - XN
which we expect to be pargiof an infinite normally dis-
tributed set, what are the miost likely values of x and ¢
when N is reasonably large (which in practice usually
means at least 5)2 ¢ IDN is small, say between 5 and 1}?,
it will be casiest fovevaluate x, and o directly from the

formule
N

£ ’N I a
g A 5y 2 %y o? = N1 YEI (2 —o)

aﬂd’.i}\is worth noting that o* can bhe written in the form
4 .\': 3 .

e E [(xf—s) + (€~xu)]

I N
= 3 e 4 (DN
N {5( 6 + 2(—%) +N(§—xn)2}
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7 [ 2 -t = )

where we can give ¢ any value we please. The ncarest
round number to the mean x, is usually the most convenlent {
value for §, as then ¢? involves only the direct squaring of
reasonably small numbers, with perhaps only ikt
significant figures. If N is larger than say 10, the @ifect
calculation of x, and ¢ as above becomes \rcry lclborlovc
It can be simplified if the values of x are  grouped > as
indicated immediately below; some loss of acauracy may

be risked by doing this, but it is usuallg\diet scrious for
practical purposes, Suppose we have (e’ following 67

v NBIRGSLOf A AR sisgending order: / \\ J

47, 6, 6537538I:89:92:93@7 10°1, 102, 10°3,
10'g, 106, 10°8, 10°9, 11-1,{T1%2, 115, 1I'7, 11°Q,
1271, 1272, 1278, 124, 12:6, J2-7, 129, 1371, 131,
132, 154, I3'5, 13" 6; I?) 7; 13- 8) 13- 8: 3G, 14°2,
143, 14°5, 14°5, 14°6, ©487, 14°7, 14°9, 15, 15°2, 15°3,
156, 158, 159, 16~ 1,,1{) 3, 16:6, 167, 17, 17°2, 175,
179, 18-1, 185, 19, 19-6, 203, 21, 22-5.

Then we simplify” the calculation by treating all values of
x between 4 ab\ \b as if they had an cﬁ'cctivc * yaluc 5
all values of s\between 6 and 8 as if they had an * effective
valee 7, aH V‘alues of x between 8 and 10 as if they had an
* effective value 9, and s0 on. The only exccption is
that wheﬁ a “* border line ” value like 6 occurs (as it does
mihe)list) it is regarded as half in the class between 4 and 6
&rdcd as 5, and halfin the class between 6 and 8 regarded

+a8°7. The number of values between 4 and 6 is thus 14,
"\ “that between 6 and 8 is 21, that between 8 and 10 is 5,

and so on, as listed in the column headed F {frequency of
occurrence). At this stage we would have a table of
groups and the number in cach group as below:

X ‘16 6—8'8—1010-12 12-14'14~16/16-15 18-20'20—2222-24
F 13 22| 5 12 ‘ 17 14 8 4 a | 1!
Effective x| 5 | 7 P13 15 37 | 39 | 2r ' 23 |
. . ; | i . I
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We now say that the mean is roughly in the neighbourhood
of the group indicated by the arrow, which is called the
* working mean ”,

It is mot important if our guess is inaccurate at this
stagr. ‘We now count how many places each group is to
the Jeft or right of the arrow, and call this number of
places d, positive for places to the right of the arrow and" A\ ¢
negative for places to the left of it. We now turn the(™
whele arrangement vertically, and to the values ‘o
“ offective x *’, F and d already discussed, we add co}ufg}ns
of valucs of Fd and Fd? as below: O\ °

“"\'\.'
Effective 'F;a
2 4 F
7 2k —3 7 223
9 5 —2  A\SI10 20
I1 12 -1 N—12 12 |
,.}};. C —total Warking
—13 17 2N o —35% Mean
1 14, I 14 14
1? .8 2 16 32
19 L\ 3 12 36
ar () 2 4 8 32
pL /) I 5 5 25
\\ +total ,
N\ 6 55 217
"’\\ fotal 7 Net total
\ +19%

'n\' <$
mm~\./ '
) "The Fd and Fd* columns explain 'themselv_es; it saves
\ effort to add up the (Fd) entries with neg;at.wc Sé%;lsa?*ﬁc;
those with positive sign separately, but I;‘ld 1; I(lictha.t ily
positive, so they can all be added. We thus Ein at the
mean is 1g+5/67 = 0'291 IOWS below ihe wor a]lgtxcated

The 17 members of the working-mean group arc

as if x was 13 for them, and the «group interval 3::



BASIC MATHEMATICS

2 units of x, so the actual mean is
13 + 2 X o291 == 13:582

To determine o, we have that the sum of the squares F42
would have heen 217f “square group intervals ™ if the
actual mean had been 19 (the mean valuc of the working:
mean group), but it nceds a correction—the subtraction
of (191)2/67 = 5-7—because this is not the case. {Fhe
sum of the values of Fd? has thus the corrected valug2x'r 8.
Dividing this by ¥ —1, that is 66, gives of=g-23,3 =179
group intervals, or 179 X2=3-58 units of ye\We haye
thus obtained ¢ by mcans of a reasonably sirdple calcula-
tion. There are vatious corrections whick _$hould strictly

www,dgﬁﬁﬁgmd Lo UfnbUt for cngmcermg'garposes we usually

#
&

TS e value of o roughly, it will therefore
be sufficient to mention only the miost important of these
corrections, which is that if o tafs)out to be appreciably
less than 4 group intervals, as‘here, the grouping is too
coarse; if the group interyal\had been halved {so that
values of x between 4 and g\were taken as all equal to 4+5,
values between 5 and 6.85%all equal to 55, and so onj it
would have been betters

One other statighichl quantity should be bricfly men-
tioned: the correlation coeflicient. If we have two
normally-distfiBbuteéd variables x and ¥, and a large number
N of pairs of é}rresponding values, we may wish to know
whether thece is any conncction between the variations
of x and%%’ The  correlation coefficient > between x and ¥
is defined as

O N
\> 2 (x—0) (7 —30)

T T

where x, 7, are the mcan values of x, ¥ respectively.
If p is zero [or docs not differ. significantly from zero] the
variations of x and y can be regarded as independent; at
the other extreme, if 3 and » are linearly related, p will
be 4-1. p cannot exceed 1. If we have a number of

342
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. the*only cflective international languageﬁ
3% But is it not also something more a?
) cfficient size-language ? Is it not also a tool,

MISCELLANEOQOUS TECHNIQUES

pairs of corresponding values of x and », say at least ten,
the best available estimate of p is obtained by substituting
in the above formula for p as if the N values belonged to
normal distributions for x and 3. A value of p has to be
high to be statistically significant if there are only a few
observations. The actual calculation can be simplified by
grouping in much the same way as the calculation of
stanclard deviation already given.

a LA
The above is only a bare ouiline of the statlstlcgi -

quantities of the greatest practical importance, tHeir
meaning, and how to estimate them. Statisticians-have
various tests by which they determine whether a st_z;tlstlcal
quantity is significant, and such tests arg ,g}{t’mde our
present scope.  For practical engmecring purposes, the
standard deviation ¢ can be regasded: ki IRy

ready measure of the scatter of z;.’l‘&\ltlomly varyin
quantity, and a correlation coefﬁci;r}kshould be regarded
as likely to have little practical significance unless it is of

the order of 0-8 or more.

150. CONCLUSION. Wrah You CaN anp CANNOT Do
WITH W MATHEMATICS

Professor Hogben says that © mathematics is the langft_la}glc
of sizc ” and thag ésisuch it is *an cssential part 0{ ‘t:he
equipment of an\iptelligent citizen . His choice of the
word ¢ citizeno™ instead of “man’ I8 deliberate, in
accordance &ith his new and distinctive E:qntcn’uon—-tihat
mathemafids is a nccessary part of polmcall iglugau(;:zi
It is sg.hetause it provides for all men, of all in saa. €
natipndlities, a precise, impersonal, and ol':u_]etittl\_e V:O Yfar
deberibing the facts of the material world. is, ,

) I a logical and
a technique, a

means of exploration and discovery ? Yo, and I;{;fegiigg
it is nccessary to finish on a note of caution, aﬂf‘l :t - mathe-
against possible disillusionment. It 13 t}z;uel d always be, so
matical description can be, and indecd shou hvsical syst:am
formulated as to clarify and illuminate tl}c Pl Yfmsuspectcd
described, and may be used to reveal previously 243

N
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relationships with other systems and ideas—to show, for
example, that the falling of an apple and the swinging of the
planets in their orbits, both depend on the same law, or
that light is an electromagnetic wave. The contemplation
of such tremendous achievements might well lead to the
idca that mathematics is a key to all the mysteries of tha
universe. But that would be an illusion. Unfortanafely
it seems to be a popular illusion. N\
When 2 conjuror takes a rabbit out of a hat, wesknow
that at some time and in some way, even though\we did
not sce it done, the rabbit must have been putfihio the hat,
and so it is with mathematics. Nothing.eo.\ﬁés out of a
mathematical analysis that was not, imphaitly or explicitly,
put into it. It is, as it were, a passiveetwork, with no

www dintertibbagguecy isf energy, and the oubput from it caunot

exceed the input, dynamically speaking, however much

it may otherwise have been trapdformed.

Mathematics, by itself, is pot*enough. The magic Hes
in the combination of mathematics and experimental
science. It happens thatiradio offers what is probably
one of the best of all the 8famples of this, the transformation
of Faraday’s experimental laws into the theory of electro-
magnetic radiation\by the mathematical genius of Clerk
Maxwell. No othier name could more fittingly end a
book on matheématics and radio. :

L )
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Appendix

ANSWERS TO EXAMPLES

1 &\
1. al® — 2% 4 be? — b% + a% — ac® Oy
, N\
20 o, 0, 0, 6- N \J/
3 b) C. .,,::: 'K.’
& v —5) (x—2); (x—5) (e +2) 5 (¢ 30fe™ 2);
(¢ — 99b) (a — b ; (2 — b) (a+B). ix\."b |
T AT, TAULLDTArY organ
’:?\d\, y-org
11 ;’\’}\

. Muliiply each side by ab ( + B)
3. Multiply numerator and ~ﬂ§ﬁomin;1tor of left-hand
side by abe, and multiplygach fraction on right-hand
(a —b) (b z2plc —3)
(a=8) (=) (¢ —4)
4. Divide both s;q‘bsfby RyR,R.Ry.

side by

5. By + R}_..%sl— +—I- , and is therefore greater than
RiRy OFF: " Ry o R
Eitll\;?;af these. Therefore }—E;_il-i}i; is less than R, or
6.G 55—
T 15 ,
8. 74, 40, 30, 26, 25, 24, 25, 26, 30, 40, 74 Notice that
x - y is least when & =
S —
IT1

Q. g5/ 618 98 __ g2 g,
¢ @ 345
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3 ¥ty =2;x—y=2

5 (a—58) (a4 8 (a* — a%h?® -+ %), becauss 4% — 8
= (aB)S _ (52)3.

@y okd
6. (;ib) = xla*") etc., ete. A\
OV
v .“;\\..“‘
1. log 5 =log 10 — log 2. \J

2. logifg=1og1—logg3; logBr=4log 3.’;(’1’6‘g 31/3 =
log 10 — log 3 ; log 3%° = 30 log 3. { &
3 L 2_:.4’4_' N4
\a\rww_dbragl.l.libumwlggggn: 30.103 = 1020 x.,g\bn;’le number bectween
I and 10, <!

log 101% = rox ; log 10%3'1 + log .
a°=1. o\
No. N

N

Minus infinity, 08

"There is no négative real value of y = a” and log (—1)"
is meaningless unless z is an even integer.

10, Logy%\lb?g k+ (b log a) x.

© W~ B

»
N/

vV 2\

LoaXd) x = Lo B x=1%; x=(d—b)jla—¢);

;'\?\Ec;))x=(£:z£;—:(7ug)?(mcl—na).() ( g
N2 —4f3, — 30

x“\’::::; 3 {a)2andg; () —2and —g; {¢) —2 and 3,
~\/ (d} 2 and — 3.

2; (b nd 4; (&) (g — &) and (a + 5}
58 B 0 om0

5. (a) +2, 1,43 ('b) a b,c, d, e
) —b% vb¥—gac o —eﬂ:;\f*ﬂ@’.

g
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APPENDIX

—%H 739 —

(1 —24/—=1), (1t4+24/=1), 4 30. (Since
{1 ~ 24/ = 1) is a root {1 - 24/— 1) must also be.
The corresponding factor is (x? —2z+35). The

other factor is 12022 — 240% + 600.) N

0. {Sece Section 45.) A
RN

{a) x =~ 1,y = 81, N\

{b) x = 0.62, y = 0.18. 9

() x =9, y=20rx=23=3 (Square 1st an{l..’"
subtract end. This gives 25y = I;{} p fs)‘ » *
by (2, —2); (— 3 Y :_'55—_1
© i"actors)of 1(st qun.ge)lrc E3x32- y)(\»&im_ilﬁhb‘l}ﬂ‘rar orgin
© (4 3); (=4 —38); V3RV
(= 7312 5v/3/6)- &6
This is the unselvable pair rcferred:t’g in Section 51.

N

4 z=5's:; Eb) x=y=z=1; (0
I

—a 4+ b, g NG 2h 2

(@) 103 () L226s.
1 1, -+ $Ngrid+/ 1 7 are clearly possible yaluglsf ﬁgfrgrlé
cighth/feot of unity, and since they gIVC eight difie
Va-%“:ﬁ}thcy must be all the possible values.

N

R\ -
V}L}f'
;\;-“' When & — — ¢/d, p = (ad — &)/0-
2. 0, co; bid, bfd. '
3 (¢ —b)f(a—c).

_(z—1)(r—2) (= 3) Limitsare2/3, /2 ©:
347
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5. o.
6. Break up into
\/x—\/a_l_\/x—a Putx == g + f, Ao\
VT —at Ak —
i OV
Limit = 0 4 1{4/2a. ;“:\\...“,
« \J
z‘x“'
X o’

4%
I, Gnyq —8n =4 =const. ; ¢ + & 3\1\‘;:555 =+ 50b.
3. nihterm =S, — 8 ; common Q\tio'is T
wwrw dbrduli BRagoniy §n—n)r. '\\'
5. Convergent by comparison m\h series 1/n% Ifxis¢?
the rth term is infinite. O \4
6. {a) Divergent for all values of # (ef. 1/n series).
(b) Divergent (cf. 1 ftn.scncs
(c) Convergentifiw | << 8f2. (Noteratio of (z -+ 1)th
term to nth )

\
O
X K

7N\
1. (a) 'f"-}— x-Fx? — x4 st

{@b‘)’ a—1+ P —a+ xllJ P WRLE L
'\

125
) ,\ 44 ,.z0 4—21,
\::‘:',\ + {)23 ¥
,,\") N (6) 1 4 8% 4 6% + 104® 4 1544
N/ 2. Becawsen{n+1)(nt+2) . ... (2n—2) = (2n — 2}

(2n—3) . ...m

2.0931.
1.g9520.

3
4
5. Puta = em, that is, m = log.a.

7. Expand ¢! and group terms in pairs,
48
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APPENDIX

87,

Divide figure into five triangles by lines to the corners
from any internal point. Take sum of angles of these
triangles, Hence sum of internal angles of pentagon
=1 X 2 rt. angles — 4 ri. angles.

3. 4 4/9, 5 5/9 (inches).
5. Tango® = r1.191 ; sec 50° = L.555 ; COSCC 50° = 1.305; Oy
cot 507 = 0.840; sin 140° = 0.643; cos 220 = AR T
- 0965 ; tan g20° = —o0.840; tan —350 A Ny
- 1a1g1;  sin 40° = 0.643; s€C — 407 = &€
407 == [.305, O
6. One. www,dbraﬁh)rary.org,in
7. B0°;8°%1"; oayrad ; 0.22 rad. N |
8. 83.3 units of area ; 25 units of area, { &
9. Unit increased in ratio 7 1 therefore number of units
decreased in same ratio, that is 28:26, 7.95.°
XII
L 43.3cm?; 14.55 cmg 6197 om s 75 R
2. If the sides of thcifl?ombus are the vectors & and b, t}l;t):
diagonals arx(\a..+ b) and (a8 —B). But (& +
(a — b) == a2 ~h? = osince fa = Ibl.
5. The vectEr i of const. length 7, therefore if one end
fixed, ‘otiqéf’ lies on circle. N ] 9 i
b R T = abyi et = absin 83 05
:3,@*6 between g and &,
N -
WXHT 1 forms
31, Prove by converting to exponential forms:
\ 2. Prove the tan and tanh forms by ) raglonahﬁgga _—_-thrc;
denominator and using the results cos’a + 5
cos?a — sin%a = cos 24, €1C. . .
3. a4 jb =ret® where r* = gt - p* and a1 = ;:9

&



A
7.

8.

www . dbraulibr ar? org.in

q.

X1V

I,

350
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— L 3
< 24 + 2a
a—gb_ 28 _
'ta +7b " a L b
Express ¢ as cos 8 + j sin 8 ; similarly for ¢, )
. ertit E_W“jh I — e 2 &0 N
tanh (ﬂ jb} — '-;Jii-jb + E—ﬁ:jb — . +_€:2;_2_J; ~\.

&Y
which is of the given form, with r = ¢~22and fi% b,

_, elae — bd) + flbe + ad)

4 Ky '\ }
_lbotad) —fae—bd)  NC
e 4 fz \\
(az B2 (¢® 4 d%) O
R ' \

0 = tan=" bjg + tan~! d}c & tan—1 Sle.

J¥8 g and &1m3 g, Thé vector sum of the three
sides is zero, )

i. 2ax -+ b,\Qa, 0.
é{x — 2 (2¢/2) 5 (2bfx%) 4 {BefxY) ;
(—\ 4 — (24¢/5%).
¢30 cos & + 30 cos 2% - 0 cos 3.
L 30 sin ¥ — 6o sin 2x — go sin 9.
¥ — 30 Cos ¥ — 120 cos 2% — 270 COS 3.
e=(asin bx 4 b cos bx);
e"‘z{(a2 — bz) sin bx + 2ab cos bx};
«#{(a® — 3ab?) sin bx + (34% — b3)cos bx).
aloga ; a*(loga)? ; «*(log.a)®,
a*{log.a - log, (sin %) 4+ cot x};

a”[logta{2 cot x + log, 2 log, {sin x) }——coseczx] :
“x[logsa {3 log, a cot x 4 log2a log(sin *) —

Hi.

3 cosec?x}—i— cot x coscczx] .
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b

0 = 1o ¥CE,

4 1 zax 4 by; bx t 2oy 2a; 205 85 b.

fi. €= (asin xy 4y cos )3 "
@ (b sin xy + x cos x¥); Q)
et {8 — 1) sin 4y 4 2ay COs KP}; AL
certtn{(pt —x?) sin xy + 2 bx cos o) <\
et (gh — &) sinxy + (1 4 ax - by) cos gh ;;'"}\
The same. A\

Max. when # = 1 and min. whenx = — 1 ; the Sf‘ms ’

6482 km. \;“‘}\\'

Putting s for the distance, dsfdt = 500 NP = © )

when t = 50 secs. www.c! ratlibrary org.in

From t = o to { == 50, § = 0°125 l_(_m’;:i?o 3.

% 4 y has the minimum value 244 Ewhfn =)

90 A —B=C;A44+B=D.  \J

oo

&=

XV N\
Lok + w)v; (B2 — @+ 2ek)Y .
VEE T wf vpe® qqs’ﬁt + 3 + tant wlé);
(4% + w?) Z’oe“@s\'(wf + 4+ 2 tan™t wfk).

laz4g »
o, bu%;’_}l"q_ const.
x:\;": d ___b_..—
ii, (Break up into %{I '—E;_-FE} Tt
™\

\ . be — ad &) + const.

;..{::{; Integral 13 a; = loge (ox + »t
0“' iii. Sec x -+ const,

iv. — Leot-1 (_x_) + const.
a a
v. Tan—? ¢ - const.

8. L log, x(sids) ; (x%0)(3 log — 1) oo

351
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. (loga)? (dx) ; x(logx)? — 2 f log.x dx.

Then log.x{dx) ; xlog x—f L
Final result x{logx)® — zx(logex) + 2x -I- conft™

i, tan—x(dx) ; x tan~ix — IogE (1 + 2% J{ ()nst
4 Put f Sx) dv = F(x). %
AN

. iy 2. (i) o. 1ii) ut sin g N1 — cos 28
5 () ( ) ( T, p i1 ’\KQ/ )

(iv) e} H put '31[1 m9 SIT.I ?19 =] Q{C 08 {??? — n) ﬁ — 08
www.dbraulibrary.o@'g.”ﬁr nyf}. )
{v) o. : \V

7. Sl = '4 rSlIl wi + 3 SlW3wt - —_- sin Rt + . . .3
e o 3

> Y

Note : ?jf(x) XVt dt :TjUA sin nawt df

fA%q mz dt,

8. The n harmonics repeat without change of sign
every f period,
9. Yes\JIH T is the pcrlod S+ T) e+ T) =
f‘{i’jfg(t is satisfied if T =m7, = 2T, and since
'\Q} i the least value whlch sa‘usﬁcs these cqualities it
¢\Vis the least common multiple of 7 and 7T,.

.§~ '
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INDEX

In this index the first figure of each ftem 15 the page number
on twhich the required section begins and the second figure
[Fn square brackets] is the actual section number.

Addition, 12 [3]
complex numbers, 111 [54]
double groups, 15 [5]
fractions, 45 [21]
faws, 12 [3]
-~ agsaciation, 15 [4]
— commutation, 1z [3], 20
8]
pasitive and negative num-
bers, zo [8]
Veerors, 1 8o
Algebra, 11 [1§7I ]
detinition, r1 [2]
Alternating current, z53 [124)
amplitude, 253 [124]
eflective value, 277 [133]
reasurement, 277 [133]
oot mean sguare value, 277

[r3a]
Amplitude of alternating current,
253 [r24]

Angle, 157 [71] A
circular measure, 169 [77]
complementary, 157 [%1)
opposite, 157 [71] )
right, 157 [71] N

Area, 171 [78] MY

Argument, 118 {6}

Arithmetical _ progression,

[63] (7>

Asympt%"}.i’z for]

Average:q{ % function, 246 [122]

132

Base 9P logarithms, 71
_Binomial » 71 59
\ “series, 140 [66], 143 671
\ theorem, 143 [67
Boundary conditions, 207 [105]
Brackets, 15 [4]
and negative sign, 22 [0]
within brackets, 24 [10]

*

Calculus, 207 [104]
Heavyside’s, 287 [137]
Capacitance, 260 [127], 288 [138] A
Cartesian 2 AN
co-ordinates, 60 [37] N
diagram, 66 [37], 107 [52] 4 ™
Cascade, networks in, 312 [1481
Chrystal,@;[ [2], 26 [11] 9
Circle, 1 R af L
area, 17? Gl aUI.JhI:@y'Ol &.in
Circuit ; ’
oscillatory, 203
[139] xii_{'
— magnifichtion factor, 267
[¥3al, 274 [132]
rejeétor, 281 [135]
Coefficients, 33 [16]
Complex numbers, 83 [43], 110
%y [53]——see alse Imaginary
numbers

frz9], 292

LN

0% addition, 111 [54]

conjugate, 112 {56
modulus, 112 [56]
multiplication, 112 [56]
rationalization, 18¢ [93]
square root, I15 [s9
zere, 111 [55]

Computation, 329 [148]

Conic sections, bg7 [46], 103 [50]

Conjugate numbers, 112 15

Con{ir%-uity of functions, 118 [QO]

Convergence of series, se¢ Jeries

Ca-ordinates, Cartesian, 66 [37]

Correlation coefficient, 337 [x49]

Cosecant, 166 [761

Cosech x, 198 [100]

Cosh x, 198 [100]

Cosine, 166 [76] g]
complex argument, 197 [o
exponential form, 197 [99]
- series, 196 [97]
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Cotangent, 166 [76]

Coth x, 198 [10q]

Critical values of functions, 235
o [

Cubic equations, g2 [45]

Damped oscillations, 232 [115],
271 [£31], 300 [141]
De Moivre’s theorem, 1g1 [94],
196 [97]
Denominator, 471 [19]
Derivative, 222 [112]—see also
Differential coefficient
Descaries, R., 66 [17]
Difference, 18 [4]
Differential
culus, 207 [104]

' gal
wWW.dbrauh&ém}éiSH%“EO? {105], 212

[106], 222 [112]
equatioms, 207 [105]
— Bncar, with constant co-
efficients, 320 [147]
Differentiation, 214 {110]

of vectors, 232 [115] o
partial, 223 [113] &N

standard forms, 2:8 {Lzijs
successive, 223 [T12]a\
Divergent series, 134 [639%
Dividend, 41 [19] ,2°
Division, 41 [19] ~
algebraic, 104 [51]
numericaly \
~— fraction®, 45 [21]
— logarithms, 71 [39]
-~ degative numbers, 43 [20]
260,40 [22, 23]
Divigary’41 [1g]
Dynédmics of oscillations, 274

\% f132]
28 e, 71 [39], 140 [68]

LY Equations, 65 [37], 78 [40]

O

— toots, 78 [41], 208 [140]

cubic, 92 [45]

differential, 207 [104]

~— linear, with constant co-
efficients, 320 [147]

linear, 81 [4z2]

nth degree, 92 [45], 124 [58]

356

Equations,
quadratic, 83 [43]
quartic, 9z f45]
sitnultancous,  wo  un-
knowns, g7 {46!
— both first deprec, 9 [45]
— both sccond degree. 104
[51] 0\
— one first degree, 103 [50]
— parallel lines, o1 8]
— several unknowssM o7
[52] 4
Equiangular spiral, 233 [<:5]
Exponential = { ™
function, Hig/hsS]
series, 140(66], 149 [68], 202
RTINS

Fagg:ﬁ%}fmo [66]
Factors, 37 [17]

Failrier’s theorem, 246 [123]

{ Bréctions, a1 [19]

addition, 45 [21]

distribution of denominator,
45 [21]

division, 45 [21]

muitiplication, 45 [21]

partial, 292 [134]

reduction to lowest terms,
45 [21]

Iree oscillations, 271 [131], 292

[z35]

Frequency, 253 [124]
fundamental, 246 [123]
modulation, 253 [124]

Functions, 66 [37]
continuity, 118 [6o]
critical values, 225 [114]
mean value, 222 [112]

— exponential, &6g [3¥]
— hyperbolic, 198 [100], 305

144
~— linear, 66 [37]
— parabolic, 83 [43]
— periodic, 246 {123]
— quadratic, 83 [43]
Fundamental frequency, a4
[r23]
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Geamctric series, 132 [63]
Geometry, 156 [70]
Graphs, 66 [37]

Harmenics, 246 [123]

Heavsside's caleulus, 287 [137]

Hypevbolic functions, g8 [ro0],
3oy [144]

Hypotenuse, 166 [76]

i, 110 {53]
Imaginary numbers, 62 [36]
Impedance, 267 [r30], 288 [138]
— operator, 263 [129], 267
[130], 288 [138]
combination, series, parallel,
o 278 ra4]
Indices, 55 [26]
fractional, 58 [32]
negative, 56 [28]
zero, 57 [29]
Inductance, 260 [126], 288 [138]
Infinitesimal, zo7 [105]
caleutus, 207 [104]
Infinity, 101 [48])
Integration, 235 [116]

by changing variable, 2384 : *

[r1g]
by parts, 240 [120]
of a constant, 237 [11¥
of sum and differénce of
functions, 238&331
of 1/x, 235 [116]
— definite, 24q J121]
Irrational numbérs;, 62 [36]

2

i, imaginarf 370 [53]

%KM perator, 186 [89]

Ks'r::fzﬁ%’s laws, 28 [12], 102
2t ag), 1oy [52], 257 [125;
~O 263 [129
N/Laplace transforms 288 [138]
Least squares, 337 [149]
Limits, 122 [61]
Linear
equations, 81 [42]
functions, 66 [37]

Logarithmic series, 140 [66]
Logarithms, 71 [39]
change of base, 71 [39]
common, 71 [39]
natural, 71 [39]

Magnification factor, 267 [130],
274 [132]
Matrices, 305 [144]
of arbitrary 4-terminal net-
works, 312 [145] )
of simple networks, 316 [1461; \
Maximum and minimum detek- "
mination, 225 [114] { ™%
Mean value of functions)\246
[x22] }‘
Measurements, A.gt, 27 133)
Modulatio, é’ﬁ@iﬁ?s‘ﬂly@rg,jn
Modulus, 112 [56] )
Multiplicand, ‘g 14]
Multiplication, 30 [14]
assbciation, 30 [14]
t;or‘nrflutaticn, 0 [14]
sdistribution, 30 [14]
 fractions, 45 [21]
% Jogarithms, 71 [39]
negative numbers, 34 [15]
number groups, 35 11
physical quantities, 38 [18]
vector by scalar, 179 [82]
vector by vector, 180 [B5
zero in, 35 [16]
— cross, 8t [42]

Multiplier, 30 [14]

N

2N

Negative numbers, 16 6]
division, 43 [20]
multiplication, 34 [1 5]
vectors, 178 [31

Networks, ]
arbitraty 4-terminal, mat-

rices, 314 [145]
in cascade, 312, [145]
parallel, 312, [145]

series, 312 [145
simple, matrices, 312 [1a5]

Newton, Str Isagc, 207 [105)

Nodes, 253 [r24]
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BASIGC MATHEMATIGS

Numbers—see Complex, Ima-
ginary, Negative
irrational, 6z [36]
Numerator, 41 [19]

Ohm’s law, 257 [125], 288 [138]
Operand, 179 {83]
Operator, 179 [83]
addition, 188 [g1]
equality, 18g [g2]
roots, 199 [101]
{a + jB), 187 [90]
r (cos § + jsin 6), 191 [94]
r &, 194 [96]
Ogscillations, 253 [124]
damped, 232 [115], 271 [131],
e .
www.dbraul a%f'tn %c}‘ngﬁlg%r[l 32]
free, 271 [131], 202 [139]

transient, 271 [131], 292 | 136]

Parabola, 83 [43]
Parallel
impedances, 278 [134]

— lines, 161 [73] R

N

equation for, 101 [48] (\™
networks, 312 [145] S3°
Parallelogram, 171 78]
Partial fractions, 292 {i3g]
Periodic function, 248 [123]
Phase, 253 [124;\ ™
angle of impédance operator,
267 [139]
Power fact{)r; 277 [133]
Powers falgébraic, 55 [26)
ofiproducts and quotients,
7N\853 [31]
wproducts of, 53 [27]
duct, 30 [14]—see also Vectors
W, of powers, 55 [27] '
% Progression, see Series
\'"\\' «  Projection, 180 [$5]
4
Q factor, 267 [130], 274 [132]
Quadratic equations, 83 [43]
Quadrature, 263 [129]
Quartic equations, gz [45]
Quotient, 41 [19]

356

Radian, 169 [77]
Rate of change, zo7 [103]
Rationalisation, 18¢ [g3]
Reactance, 267 [130]
Reciprocal, 45 {z1]
Rejector circuit, 281 [135]
Resistance, 267 [130], 288 [138]
dynamic, 281 [135] N\
Besonance, 267 [130]
Root mean square valuesy %77
[z33] A\
Roots, 58 [32] O
of operators, 19g {197]
of unity, 92 [44]™%
of — 1, 6z [8B], 110 [53]
— of equations, 78 (41}, 92
(451, 314 [58], 208 [140]
~— square, of complex num-
Bets, 115 [39]
Scalak, %76 [79)

{_Pbroduct, 180 [35]
Seégant, 166 [76]

s Sech x, 168 [100]
L e H
AN SSeries

algebraie, 131 [62]

convergence, 134 [64], 136
[65]

networks, 312 [145]

summation, 132 [63], 134

— atithmetical, 132 [63]
— binomial, 140 [66], 143
[67]
— cosine, 196 [97]
—— exponential, 140 [66], 149
[68], 292 [13g]
— geometric, 132 [63]
~— impedance, 278 [134]
— logarithmie, 140 [66]
— sine, 196 [g7]
Similarity, geometnic, 163 [75]
Simultaneous  equations, &2
Equations
Sine, 166 [76]
complex argument, 197 [68]
exponential form, 197 [90
— series, 166 [¢7]
Sinh x, 148 [100]
Slope, 212 [107]



INDEX

Spiral, equiangular, 232 [115]

Square root, see Root

Stability, 298 [140], 300 [142]

Standurd deviation, 337 [149]

Standing waves, 253 [124]

Straight line, 156 [7o]

Subiraction, 16 6]

Surds, 62 [326]

Symbols, 18 [7], 26 [r1]
letter, 11 fi], 26 [11]

Tangent
geomictric, 212 [1o9]
trigonometric, 166 [76]
Tanh x, 198 [100]
Timebase of television receiver,
320 [147] ) .
Transforms, Laplace, 288 [138]
Transient oscillations, z71 [131],
292 [139]
Triangles, 160 [72]
area, 71 [78]
equal, 162 [74]
isosceles, 169 [77]
similar, 163 [75]

O
)

N

Trigonometry, 166 [76]
Tuned circuit, 263 [129], 281

[135
matching, 283 [136]
Unit vector, 17¢ [84]

Variable, 66 [37]
Vector, 176 [79]
addition, 177 [80]
differentiation, 23z [115] PAN
multiplication by scalar, I79 \J
82]
scalar product, 18c [85] \
— negative, 178 [81], ‘{‘:
— unit, 19 [34],
— representation &

W wmdﬂ&g@y&ﬂn{auﬁ]org in

Wavelength, 253 bz4]
Waves
eIectrLc 3.53 [124]
progrgssive, 253 [124]
stationary, 253 [124]
Wheptstone bridge, 107 [52]
Bféz‘téhead A, N., 51 [25], 1

a8 [53], 207 [1o4]
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